Towards Algorithmic Transparency: A Diversity Perspective
- URL: http://arxiv.org/abs/2104.05658v1
- Date: Mon, 12 Apr 2021 17:28:12 GMT
- Title: Towards Algorithmic Transparency: A Diversity Perspective
- Authors: Fausto Giunchiglia, Jahna Otterbacher, Styliani Kleanthous,
Khuyagbaatar Batsuren, Veronika Bogin, Tsvi Kuflik, Avital Shulner Tal
- Abstract summary: Research on algorithmic bias has exploded in recent years, highlighting both the problems of bias, and the potential solutions.
Transparency is important for facilitating fairness management as well as explainability in algorithms.
We reflect on the relationship between diversity and bias, arguing that diversity drives the need for transparency.
- Score: 8.138520743045731
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As the role of algorithmic systems and processes increases in society, so
does the risk of bias, which can result in discrimination against individuals
and social groups. Research on algorithmic bias has exploded in recent years,
highlighting both the problems of bias, and the potential solutions, in terms
of algorithmic transparency (AT). Transparency is important for facilitating
fairness management as well as explainability in algorithms; however, the
concept of diversity, and its relationship to bias and transparency, has been
largely left out of the discussion. We reflect on the relationship between
diversity and bias, arguing that diversity drives the need for transparency.
Using a perspective-taking lens, which takes diversity as a given, we propose a
conceptual framework to characterize the problem and solution spaces of AT, to
aid its application in algorithmic systems. Example cases from three research
domains are described using our framework.
Related papers
- Algorithmic Fairness: A Tolerance Perspective [31.882207568746168]
This survey delves into the existing literature on algorithmic fairness, specifically highlighting its multifaceted social consequences.
We introduce a novel taxonomy based on 'tolerance', a term we define as the degree to which variations in fairness outcomes are acceptable.
Our systematic review covers diverse industries, revealing critical insights into the balance between algorithmic decision making and social equity.
arXiv Detail & Related papers (2024-04-26T08:16:54Z) - Hierarchical Invariance for Robust and Interpretable Vision Tasks at Larger Scales [54.78115855552886]
We show how to construct over-complete invariants with a Convolutional Neural Networks (CNN)-like hierarchical architecture.
With the over-completeness, discriminative features w.r.t. the task can be adaptively formed in a Neural Architecture Search (NAS)-like manner.
For robust and interpretable vision tasks at larger scales, hierarchical invariant representation can be considered as an effective alternative to traditional CNN and invariants.
arXiv Detail & Related papers (2024-02-23T16:50:07Z) - Fairness Explainability using Optimal Transport with Applications in
Image Classification [0.46040036610482665]
We propose a comprehensive approach to uncover the causes of discrimination in Machine Learning applications.
We leverage Wasserstein barycenters to achieve fair predictions and introduce an extension to pinpoint bias-associated regions.
This allows us to derive a cohesive system which uses the enforced fairness to measure each features influence emphon the bias.
arXiv Detail & Related papers (2023-08-22T00:10:23Z) - Algorithmic Pluralism: A Structural Approach To Equal Opportunity [0.4954041894944345]
We argue that there must be a pluralism of opportunity available to many different individuals in order to promote equal opportunity in a systemic way.
We show how this framework has several implications for system design and regulation through current debates about equal opportunity in algorithmic hiring.
arXiv Detail & Related papers (2023-05-14T13:37:17Z) - Bias, diversity, and challenges to fairness in classification and
automated text analysis. From libraries to AI and back [3.9198548406564604]
We investigate the risks surrounding bias and unfairness in AI usage in classification and automated text analysis.
We take a closer look at the notion of '(un)fairness' in relation to the notion of 'diversity'
arXiv Detail & Related papers (2023-03-07T20:54:49Z) - A Unified Algorithm Framework for Unsupervised Discovery of Skills based
on Determinantal Point Process [53.86223883060367]
We show that diversity and coverage in unsupervised option discovery can indeed be unified under the same mathematical framework.
Our proposed algorithm, ODPP, has undergone extensive evaluation on challenging tasks created with Mujoco and Atari.
arXiv Detail & Related papers (2022-12-01T01:40:03Z) - Social Diversity Reduces the Complexity and Cost of Fostering Fairness [63.70639083665108]
We investigate the effects of interference mechanisms which assume incomplete information and flexible standards of fairness.
We quantify the role of diversity and show how it reduces the need for information gathering.
Our results indicate that diversity changes and opens up novel mechanisms available to institutions wishing to promote fairness.
arXiv Detail & Related papers (2022-11-18T21:58:35Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
We study multi-group fairness in machine learning (MultiFair)
We propose a generic end-to-end algorithmic framework to solve it.
Our proposed framework is generalizable to many different settings.
arXiv Detail & Related papers (2021-05-24T02:30:22Z) - Selection-Expansion: A Unifying Framework for Motion-Planning and
Diversity Search Algorithms [69.87173070473717]
We investigate the properties of two diversity search algorithms, the Novelty Search and the Goal Exploration Process algorithms.
The relation to MP algorithms reveals that the smoothness, or lack of smoothness of the mapping between the policy parameter space and the outcome space plays a key role in the search efficiency.
arXiv Detail & Related papers (2021-04-10T13:52:27Z) - End-to-End Learning and Intervention in Games [60.41921763076017]
We provide a unified framework for learning and intervention in games.
We propose two approaches, respectively based on explicit and implicit differentiation.
The analytical results are validated using several real-world problems.
arXiv Detail & Related papers (2020-10-26T18:39:32Z) - No computation without representation: Avoiding data and algorithm
biases through diversity [11.12971845021808]
We draw connections between the lack of diversity within academic and professional computing fields and the type and breadth of the biases encountered in datasets.
We use these lessons to develop recommendations that provide concrete steps for the computing community to increase diversity.
arXiv Detail & Related papers (2020-02-26T23:07:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.