Inference of cell dynamics on perturbation data using adjoint
sensitivity
- URL: http://arxiv.org/abs/2104.06467v1
- Date: Tue, 13 Apr 2021 19:15:56 GMT
- Title: Inference of cell dynamics on perturbation data using adjoint
sensitivity
- Authors: Weiqi Ji, Bo Yuan, Ciyue Shen, Aviv Regev, Chris Sander, Sili Deng
- Abstract summary: Data-driven dynamic models of cell biology can be used to predict cell response to unseen perturbations.
Recent work had demonstrated the derivation of interpretable models with explicit interaction terms.
This work aims to extend the range of applicability of this model inference approach to a diversity of biological systems.
- Score: 4.606583317143614
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Data-driven dynamic models of cell biology can be used to predict cell
response to unseen perturbations. Recent work (CellBox) had demonstrated the
derivation of interpretable models with explicit interaction terms, in which
the parameters were optimized using machine learning techniques. While the
previous work was tested only in a single biological setting, this work aims to
extend the range of applicability of this model inference approach to a
diversity of biological systems. Here we adapted CellBox in Julia differential
programming and augmented the method with adjoint algorithms, which has
recently been used in the context of neural ODEs. We trained the models using
simulated data from both abstract and biology-inspired networks, which afford
the ability to evaluate the recovery of the ground truth network structure. The
resulting accuracy of prediction by these models is high both in terms of low
error against data and excellent agreement with the network structure used for
the simulated training data. While there is no analogous ground truth for real
life biological systems, this work demonstrates the ability to construct and
parameterize a considerable diversity of network models with high predictive
ability. The expectation is that this kind of procedure can be used on real
perturbation-response data to derive models applicable to diverse biological
systems.
Related papers
- Omics-driven hybrid dynamic modeling of bioprocesses with uncertainty estimation [0.0]
This work presents an omics-driven modeling pipeline that integrates machine-learning tools.
Random forests and permutation feature importance are proposed to mine omics datasets.
Continuous and differentiable machine-learning functions can be trained to link the reduced omics feature set to key components of the dynamic model.
arXiv Detail & Related papers (2024-10-24T15:50:35Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Toward Physically Plausible Data-Driven Models: A Novel Neural Network
Approach to Symbolic Regression [2.7071541526963805]
This paper proposes a novel neural network-based symbolic regression method.
It constructs physically plausible models based on even very small training data sets and prior knowledge about the system.
We experimentally evaluate the approach on four test systems: the TurtleBot 2 mobile robot, the magnetic manipulation system, the equivalent resistance of two resistors in parallel, and the longitudinal force of the anti-lock braking system.
arXiv Detail & Related papers (2023-02-01T22:05:04Z) - Learning Causal Representations of Single Cells via Sparse Mechanism
Shift Modeling [3.2435888122704037]
We propose a deep generative model of single-cell gene expression data for which each perturbation is treated as an intervention targeting an unknown, but sparse, subset of latent variables.
We benchmark these methods on simulated single-cell data to evaluate their performance at latent units recovery, causal target identification and out-of-domain generalization.
arXiv Detail & Related papers (2022-11-07T15:47:40Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - A Physics-Guided Neural Operator Learning Approach to Model Biological
Tissues from Digital Image Correlation Measurements [3.65211252467094]
We present a data-driven correlation to biological tissue modeling, which aims to predict the displacement field based on digital image correlation (DIC) measurements under unseen loading scenarios.
A material database is constructed from the DIC displacement tracking measurements of multiple biaxial stretching protocols on a porcine tricuspid valve leaflet.
The material response is modeled as a solution operator from the loading to the resultant displacement field, with the material properties learned implicitly from the data and naturally embedded in the network parameters.
arXiv Detail & Related papers (2022-04-01T04:56:41Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - TaBooN -- Boolean Network Synthesis Based on Tabu Search [0.0]
Omics-technologies revolutionized the investigation of biology by producing molecular data in multiple dimensions and scale.
Biological network is composed of nodes referring to the components such as genes or proteins, and the edges/arcs formalizing interactions between them.
arXiv Detail & Related papers (2020-09-08T08:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.