A Review of Anonymization for Healthcare Data
- URL: http://arxiv.org/abs/2104.06523v1
- Date: Tue, 13 Apr 2021 21:44:29 GMT
- Title: A Review of Anonymization for Healthcare Data
- Authors: Iyiola E. Olatunji, Jens Rauch, Matthias Katzensteiner, Megha Khosla
- Abstract summary: Health data is highly sensitive and subject to regulations such as General Data Protection Regulation ( General Data Protection Regulation ( General Data Protection Regulation ( General Data Protection Regulation ( General Data Protection Regulation ( General Data Protection Regulation ( General Data Protection Regulation ( General Data Protection Regulation ( General Data Protection Regulation ( General Data Protection Regulation ( General Data Protection Regulation ( General Data Protection Regulation ( General Data Protection Regulation ( General Data Protection Regulation ( General Data Protection Regulation ( General Data Protection Regulation ( General Data Protection Regulation ( General Data Protection Regulation ( General Data Protection Regulation ( General Data Protection Regulation ( General Data Protection Regulation ( General Data Protection Regulation ( General Data Protection Regulation (
- Score: 0.30586855806896046
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mining health data can lead to faster medical decisions, improvement in the
quality of treatment, disease prevention, reduced cost, and it drives
innovative solutions within the healthcare sector. However, health data is
highly sensitive and subject to regulations such as the General Data Protection
Regulation (GDPR), which aims to ensure patient's privacy. Anonymization or
removal of patient identifiable information, though the most conventional way,
is the first important step to adhere to the regulations and incorporate
privacy concerns. In this paper, we review the existing anonymization
techniques and their applicability to various types (relational and
graph-based) of health data. Besides, we provide an overview of possible
attacks on anonymized data. We illustrate via a reconstruction attack that
anonymization though necessary, is not sufficient to address patient privacy
and discuss methods for protecting against such attacks. Finally, we discuss
tools that can be used to achieve anonymization.
Related papers
- The Gradient of Health Data Privacy [15.417809900388262]
This paper introduces a novel "privacy gradient" approach to health data governance.
Our multidimensional concept considers factors such as data sensitivity, stakeholder relationships, purpose of use, and temporal aspects.
We demonstrate how this approach can address critical privacy challenges in diverse healthcare settings worldwide.
arXiv Detail & Related papers (2024-10-01T17:35:18Z) - S3PHER: Secure and Searchable System for Patient-driven HEalth data shaRing [0.0]
Current systems for sharing health data between patients and caregivers do not fully address the critical security requirements of privacy, confidentiality, and consent management.
We present S3PHER, a novel approach to sharing health data that provides patients with control over who accesses their data, what data is accessed, and when.
arXiv Detail & Related papers (2024-04-17T13:31:50Z) - Preserving The Safety And Confidentiality Of Data Mining Information In Health Care: A literature review [0.0]
PPDM technique enables the extraction of actionable insight from enormous volume of data.
Disclosing sensitive information infringes on patients' privacy.
This paper aims to conduct a review of related work on privacy-preserving mechanisms, data protection regulations, and mitigating tactics.
arXiv Detail & Related papers (2023-10-30T05:32:15Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
In this paper, we propose a novel face privacy protection method based on diffusion models, dubbed Diff-Privacy.
Specifically, we train our proposed multi-scale image inversion module (MSI) to obtain a set of SDM format conditional embeddings of the original image.
Based on the conditional embeddings, we design corresponding embedding scheduling strategies and construct different energy functions during the denoising process to achieve anonymization and visual identity information hiding.
arXiv Detail & Related papers (2023-09-11T09:26:07Z) - Blockchain-empowered Federated Learning for Healthcare Metaverses:
User-centric Incentive Mechanism with Optimal Data Freshness [66.3982155172418]
We first design a user-centric privacy-preserving framework based on decentralized Federated Learning (FL) for healthcare metaverses.
We then utilize Age of Information (AoI) as an effective data-freshness metric and propose an AoI-based contract theory model under Prospect Theory (PT) to motivate sensing data sharing.
arXiv Detail & Related papers (2023-07-29T12:54:03Z) - Towards Blockchain-Assisted Privacy-Aware Data Sharing For Edge
Intelligence: A Smart Healthcare Perspective [19.208368632576153]
Linkage attack is a type of dominant attack in the privacy domain.
adversaries launch poisoning attacks to falsify the health data, which leads to misdiagnosing or even physical damage.
To protect private health data, we propose a personalized differential privacy model based on the trust levels among users.
arXiv Detail & Related papers (2023-06-29T02:06:04Z) - Defending Medical Image Diagnostics against Privacy Attacks using
Generative Methods [10.504951891644474]
We develop and evaluate a privacy defense protocol based on using a generative adversarial network (GAN)
We validate the proposed method on retinal diagnostics AI used for diabetic retinopathy that bears the risk of possibly leaking private information.
arXiv Detail & Related papers (2021-03-04T15:02:57Z) - Privacy-preserving medical image analysis [53.4844489668116]
We present PriMIA, a software framework designed for privacy-preserving machine learning (PPML) in medical imaging.
We show significantly better classification performance of a securely aggregated federated learning model compared to human experts on unseen datasets.
We empirically evaluate the framework's security against a gradient-based model inversion attack.
arXiv Detail & Related papers (2020-12-10T13:56:00Z) - COVI White Paper [67.04578448931741]
Contact tracing is an essential tool to change the course of the Covid-19 pandemic.
We present an overview of the rationale, design, ethical considerations and privacy strategy of COVI,' a Covid-19 public peer-to-peer contact tracing and risk awareness mobile application developed in Canada.
arXiv Detail & Related papers (2020-05-18T07:40:49Z) - Digital Ariadne: Citizen Empowerment for Epidemic Control [55.41644538483948]
The COVID-19 crisis represents the most dangerous threat to public health since the H1N1 pandemic of 1918.
Technology-assisted location and contact tracing, if broadly adopted, may help limit the spread of infectious diseases.
We present a tool, called 'diAry' or 'digital Ariadne', based on voluntary location and Bluetooth tracking on personal devices.
arXiv Detail & Related papers (2020-04-16T15:53:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.