Towards Time-Optimal Any-Angle Path Planning With Dynamic Obstacles
- URL: http://arxiv.org/abs/2104.06681v1
- Date: Wed, 14 Apr 2021 07:59:53 GMT
- Title: Towards Time-Optimal Any-Angle Path Planning With Dynamic Obstacles
- Authors: Konstantin Yakovlev, Anton Andreychuk
- Abstract summary: Path finding is a well-studied problem in AI, which is often framed as graph search.
We present two algorithms, grounded in the same idea, that can obtain provably optimal solutions to the considered problem.
- Score: 1.370633147306388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Path finding is a well-studied problem in AI, which is often framed as graph
search. Any-angle path finding is a technique that augments the initial graph
with additional edges to build shorter paths to the goal. Indeed, optimal
algorithms for any-angle path finding in static environments exist. However,
when dynamic obstacles are present and time is the objective to be minimized,
these algorithms can no longer guarantee optimality. In this work, we elaborate
on why this is the case and what techniques can be used to solve the problem
optimally. We present two algorithms, grounded in the same idea, that can
obtain provably optimal solutions to the considered problem. One of them is a
naive algorithm and the other one is much more involved. We conduct a thorough
empirical evaluation showing that, in certain setups, the latter algorithm
might be as fast as the previously-known greedy non-optimal solver while
providing solutions of better quality. In some (rare) cases, the difference in
cost is up to 76%, while on average it is lower than one percent (the same cost
difference is typically observed between optimal and greedy any-angle solvers
in static environments).
Related papers
- Optimizing Tensor Contraction Paths: A Greedy Algorithm Approach With Improved Cost Functions [1.3812010983144802]
We introduce a novel approach based on the greedy algorithm by opt_einsum that computes efficient contraction paths in less time.
With our approach, we are even able to compute paths for large problems where modern algorithms fail.
arXiv Detail & Related papers (2024-05-08T09:25:39Z) - Tightest Admissible Shortest Path [4.928034044959278]
shortest path problem in graphs is fundamental to AI.
We introduce the problem of finding the admissible shortest path (TASP), a path with the tightest suboptimality bound on the optimal cost.
We present a complete algorithm for solving TASP, with guarantees on solution quality.
arXiv Detail & Related papers (2023-08-15T14:39:05Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - A Generalization of the Shortest Path Problem to Graphs with Multiple
Edge-Cost Estimates [13.046825574678579]
The shortest path problem in graphs is a cornerstone of AI theory and applications.
We present a framework for weighted directed graphs, where edge weight can be computed (estimated) multiple times.
We then present two complete algorithms for the generalized problem, and empirically demonstrate their efficacy.
arXiv Detail & Related papers (2022-08-22T22:07:27Z) - Leveraging Experience in Lazy Search [37.75223642505171]
Lazy graph search algorithms are efficient at solving motion planning problems where edge evaluation is the computational bottleneck.
We formulate this problem as a Markov Decision Process (MDP) on the state of the search problem.
We show that we can compute oracular selectors that can solve the MDP during training.
arXiv Detail & Related papers (2021-10-10T00:46:44Z) - Instance Specific Approximations for Submodular Maximization [45.91235224228292]
We look for methods to benchmark the performance of algorithms against optimal solutions on real-world instances.
A major question is how to measure the performance of an algorithm in comparison to an optimal solution on instances we encounter in practice.
Our main contribution is not a new algorithm for submodular minimization but an analytical method that measures how close an algorithm for submodular instance is to optimal.
arXiv Detail & Related papers (2021-02-23T19:39:32Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Community detection using fast low-cardinality semidefinite programming [94.4878715085334]
We propose a new low-cardinality algorithm that generalizes the local update to maximize a semidefinite relaxation derived from Leiden-k-cut.
This proposed algorithm is scalable, outperforms state-of-the-art algorithms, and outperforms in real-world time with little additional cost.
arXiv Detail & Related papers (2020-12-04T15:46:30Z) - A Two-Timescale Framework for Bilevel Optimization: Complexity Analysis
and Application to Actor-Critic [142.1492359556374]
Bilevel optimization is a class of problems which exhibit a two-level structure.
We propose a two-timescale approximation (TTSA) algorithm for tackling such a bilevel problem.
We show that a two-timescale natural actor-critic policy optimization algorithm can be viewed as a special case of our TTSA framework.
arXiv Detail & Related papers (2020-07-10T05:20:02Z) - Run2Survive: A Decision-theoretic Approach to Algorithm Selection based
on Survival Analysis [75.64261155172856]
survival analysis (SA) naturally supports censored data and offers appropriate ways to use such data for learning distributional models of algorithm runtime.
We leverage such models as a basis of a sophisticated decision-theoretic approach to algorithm selection, which we dub Run2Survive.
In an extensive experimental study with the standard benchmark ASlib, our approach is shown to be highly competitive and in many cases even superior to state-of-the-art AS approaches.
arXiv Detail & Related papers (2020-07-06T15:20:17Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
We study the problem of minimizing the population loss given i.i.d. samples from a distribution over convex loss functions.
A recent work of Bassily et al. has established the optimal bound on the excess population loss achievable given $n$ samples.
We describe two new techniques for deriving convex optimization algorithms both achieving the optimal bound on excess loss and using $O(minn, n2/d)$ gradient computations.
arXiv Detail & Related papers (2020-05-10T19:52:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.