Neural population geometry: An approach for understanding biological and
artificial neural networks
- URL: http://arxiv.org/abs/2104.07059v1
- Date: Wed, 14 Apr 2021 18:10:34 GMT
- Title: Neural population geometry: An approach for understanding biological and
artificial neural networks
- Authors: SueYeon Chung, L. F. Abbott
- Abstract summary: We review examples of geometrical approaches providing insight into the function of biological and artificial neural networks.
Neural population geometry has the potential to unify our understanding of structure and function in biological and artificial neural networks.
- Score: 3.4809730725241605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advances in experimental neuroscience have transformed our ability to explore
the structure and function of neural circuits. At the same time, advances in
machine learning have unleashed the remarkable computational power of
artificial neural networks (ANNs). While these two fields have different tools
and applications, they present a similar challenge: namely, understanding how
information is embedded and processed through high-dimensional representations
to solve complex tasks. One approach to addressing this challenge is to utilize
mathematical and computational tools to analyze the geometry of these
high-dimensional representations, i.e., neural population geometry. We review
examples of geometrical approaches providing insight into the function of
biological and artificial neural networks: representation untangling in
perception, a geometric theory of classification capacity, disentanglement and
abstraction in cognitive systems, topological representations underlying
cognitive maps, dynamic untangling in motor systems, and a dynamical approach
to cognition. Together, these findings illustrate an exciting trend at the
intersection of machine learning, neuroscience, and geometry, in which neural
population geometry provides a useful population-level mechanistic descriptor
underlying task implementation. Importantly, geometric descriptions are
applicable across sensory modalities, brain regions, network architectures and
timescales. Thus, neural population geometry has the potential to unify our
understanding of structure and function in biological and artificial neural
networks, bridging the gap between single neurons, populations and behavior.
Related papers
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
We develop a new method with neuronal operations based on lateral connections and Hebbian learning.
We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities.
Our method consistently solves for spiking neural networks with nearly zero forgetting.
arXiv Detail & Related papers (2024-02-19T09:29:37Z) - Human-Like Geometric Abstraction in Large Pre-trained Neural Networks [6.650735854030166]
We revisit empirical results in cognitive science on geometric visual processing.
We identify three key biases in geometric visual processing.
We test tasks from the literature that probe these biases in humans and find that large pre-trained neural network models used in AI demonstrate more human-like abstract geometric processing.
arXiv Detail & Related papers (2024-02-06T17:59:46Z) - Probing Biological and Artificial Neural Networks with Task-dependent
Neural Manifolds [12.037840490243603]
We investigate the internal mechanisms of neural networks through the lens of neural population geometry.
We quantitatively characterize how different learning objectives lead to differences in the organizational strategies of these models.
These analyses present a strong direction for bridging mechanistic and normative theories in neural networks through neural population geometry.
arXiv Detail & Related papers (2023-12-21T20:40:51Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Advanced Computing and Related Applications Leveraging Brain-inspired
Spiking Neural Networks [0.0]
Spiking neural network is one of the cores of artificial intelligence which realizes brain-like computing.
This paper summarizes the strengths, weaknesses and applicability of five neuronal models and analyzes the characteristics of five network topologies.
arXiv Detail & Related papers (2023-09-08T16:41:08Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Brain-inspired Graph Spiking Neural Networks for Commonsense Knowledge
Representation and Reasoning [11.048601659933249]
How neural networks in the human brain represent commonsense knowledge is an important research topic in neuroscience, cognitive science, psychology, and artificial intelligence.
This work investigates how population encoding and spiking timing-dependent plasticity (STDP) mechanisms can be integrated into the learning of spiking neural networks.
The neuron populations of different communities together constitute the entire commonsense knowledge graph, forming a giant graph spiking neural network.
arXiv Detail & Related papers (2022-07-11T05:22:38Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Interpretability of Neural Network With Physiological Mechanisms [5.1971653175509145]
Deep learning continues to play as a powerful state-of-art technique that has achieved extraordinary accuracy levels in various domains of regression and classification tasks.
The original goal of proposing the neural network model is to improve the understanding of complex human brains using a mathematical expression approach.
Recent deep learning techniques continue to lose the interpretations of its functional process by being treated mostly as a black-box approximator.
arXiv Detail & Related papers (2022-03-24T21:40:04Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.