QuickLoc: Adaptive Deep-Learning for Fast Indoor Localization with
Mobile Devices
- URL: http://arxiv.org/abs/2104.07521v1
- Date: Thu, 15 Apr 2021 15:19:21 GMT
- Title: QuickLoc: Adaptive Deep-Learning for Fast Indoor Localization with
Mobile Devices
- Authors: Saideep Tiku, Prathmesh Kale, Sudeep Pasricha
- Abstract summary: We present an approach for reducing the computational requirements of a deep learning-based indoor localization framework.
Our proposed methodology is deployed and validated across multiple smartphones.
- Score: 4.286327408435937
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Indoor localization services are a crucial aspect for the realization of
smart cyber-physical systems within cities of the future. Such services are
poised to reinvent the process of navigation and tracking of people and assets
in a variety of indoor and subterranean environments. The growing ownership of
computationally capable smartphones has laid the foundations of portable
fingerprinting-based indoor localization through deep learning. However, as the
demand for accurate localization increases, the computational complexity of the
associated deep learning models increases as well. We present an approach for
reducing the computational requirements of a deep learning-based indoor
localization framework while maintaining localization accuracy targets. Our
proposed methodology is deployed and validated across multiple smartphones and
is shown to deliver up to 42% reduction in prediction latency and 45% reduction
in prediction energy as compared to the best-known baseline deep learning-based
indoor localization model.
Related papers
- Center-Sensitive Kernel Optimization for Efficient On-Device Incremental Learning [88.78080749909665]
Current on-device training methods just focus on efficient training without considering the catastrophic forgetting.
This paper proposes a simple but effective edge-friendly incremental learning framework.
Our method achieves average accuracy boost of 38.08% with even less memory and approximate computation.
arXiv Detail & Related papers (2024-06-13T05:49:29Z) - A Variational Auto-Encoder Enabled Multi-Band Channel Prediction Scheme
for Indoor Localization [11.222977249913411]
We provide a scheme to improve the accuracy of indoor fingerprint localization from the frequency domain.
We tested our proposed scheme on COST 2100 simulation data and real time frequency division multiplexing (OFDM) WiFi data collected from an office scenario.
arXiv Detail & Related papers (2023-09-19T08:19:34Z) - Computation-efficient Deep Learning for Computer Vision: A Survey [121.84121397440337]
Deep learning models have reached or even exceeded human-level performance in a range of visual perception tasks.
Deep learning models usually demand significant computational resources, leading to impractical power consumption, latency, or carbon emissions in real-world scenarios.
New research focus is computationally efficient deep learning, which strives to achieve satisfactory performance while minimizing the computational cost during inference.
arXiv Detail & Related papers (2023-08-27T03:55:28Z) - VITAL: Vision Transformer Neural Networks for Accurate Smartphone
Heterogeneity Resilient Indoor Localization [3.577310844634503]
Wi-Fi fingerprinting-based indoor localization is an emerging embedded application domain.
We propose a novel framework based on vision transformer neural networks called VITAL to address this challenge.
arXiv Detail & Related papers (2023-02-18T23:43:45Z) - LocUNet: Fast Urban Positioning Using Radio Maps and Deep Learning [59.17191114000146]
LocUNet: A deep learning method for localization, based merely on Received Signal Strength (RSS) from Base Stations (BSs)
In the proposed method, the user to be localized reports the RSS from BSs to a Central Processing Unit ( CPU) which may be located in the cloud.
Using estimated pathloss radio maps of the BSs, LocUNet can localize users with state-of-the-art accuracy and enjoys high robustness to inaccuracies in the radio maps.
arXiv Detail & Related papers (2022-02-01T20:27:46Z) - Hierarchical Multi-Building And Multi-Floor Indoor Localization Based On
Recurrent Neural Networks [2.0305676256390934]
We propose hierarchical multi-building and multi-floor indoor localization based on a recurrent neural network (RNN) using Wi-Fi fingerprinting.
The proposed scheme estimates building and floor with 100% and 95.24% accuracy, respectively, and provides three-dimensional positioning error of 8.62 m.
arXiv Detail & Related papers (2021-12-23T11:56:31Z) - Siamese Neural Encoders for Long-Term Indoor Localization with Mobile
Devices [5.063728016437489]
Fingerprinting-based indoor localization is an emerging application domain for enhanced positioning and tracking of people and assets within indoor locales.
We propose a Siamese neural encoder-based framework that offers up to 40% reduction in degradation of localization accuracy over time compared to the state-of-the-art in the area.
arXiv Detail & Related papers (2021-11-28T07:22:55Z) - Markov Localisation using Heatmap Regression and Deep Convolutional
Odometry [59.33322623437816]
We present a novel CNN-based localisation approach that can leverage modern deep learning hardware.
We create a hybrid CNN that can perform image-based localisation and odometry-based likelihood propagation within a single neural network.
arXiv Detail & Related papers (2021-06-01T10:28:49Z) - EdgeLoc: An Edge-IoT Framework for Robust Indoor Localization Using
Capsule Networks [3.659977669398194]
We propose EdgeLoc, an edge-IoT framework for efficient and robust indoor localization using capsule networks.
We develop a deep learning model with the CapsNet to efficiently extract hierarchical information from WiFi fingerprint data.
We conduct a real-world field experiment with over 33,600 data points and an extensive synthetic experiment with the open dataset.
arXiv Detail & Related papers (2020-09-12T12:38:47Z) - A Survey on Deep Learning for Localization and Mapping: Towards the Age
of Spatial Machine Intelligence [48.67755344239951]
We provide a comprehensive survey, and propose a new taxonomy for localization and mapping using deep learning.
A wide range of topics are covered, from learning odometry estimation, mapping, to global localization and simultaneous localization and mapping.
It is our hope that this work can connect emerging works from robotics, computer vision and machine learning communities.
arXiv Detail & Related papers (2020-06-22T19:01:21Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
Inertial measurements units (IMUs) are small, cheap, energy efficient, and widely employed in smart devices and mobile robots.
Exploiting inertial data for accurate and reliable pedestrian navigation supports is a key component for emerging Internet-of-Things applications and services.
We present and release the Oxford Inertial Odometry dataset (OxIOD), a first-of-its-kind public dataset for deep learning based inertial navigation research.
arXiv Detail & Related papers (2020-01-13T04:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.