Higher-Order Attribute-Enhancing Heterogeneous Graph Neural Networks
- URL: http://arxiv.org/abs/2104.07892v1
- Date: Fri, 16 Apr 2021 04:56:38 GMT
- Title: Higher-Order Attribute-Enhancing Heterogeneous Graph Neural Networks
- Authors: Jianxin Li, Hao Peng, Yuwei Cao, Yingtong Dou, Hekai Zhang, Philip S.
Yu, Lifang He
- Abstract summary: We propose a higher-order Attribute-Enhancing Graph Neural Network (HAEGNN) for heterogeneous network representation learning.
HAEGNN simultaneously incorporates meta-paths and meta-graphs for rich, heterogeneous semantics.
It shows superior performance against the state-of-the-art methods in node classification, node clustering, and visualization.
- Score: 67.25782890241496
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural networks (GNNs) have been widely used in deep learning on
graphs. They can learn effective node representations that achieve superior
performances in graph analysis tasks such as node classification and node
clustering. However, most methods ignore the heterogeneity in real-world
graphs. Methods designed for heterogeneous graphs, on the other hand, fail to
learn complex semantic representations because they only use meta-paths instead
of meta-graphs. Furthermore, they cannot fully capture the content-based
correlations between nodes, as they either do not use the self-attention
mechanism or only use it to consider the immediate neighbors of each node,
ignoring the higher-order neighbors. We propose a novel Higher-order
Attribute-Enhancing (HAE) framework that enhances node embedding in a
layer-by-layer manner. Under the HAE framework, we propose a Higher-order
Attribute-Enhancing Graph Neural Network (HAEGNN) for heterogeneous network
representation learning. HAEGNN simultaneously incorporates meta-paths and
meta-graphs for rich, heterogeneous semantics, and leverages the self-attention
mechanism to explore content-based nodes interactions. The unique higher-order
architecture of HAEGNN allows examining the first-order as well as higher-order
neighborhoods. Moreover, HAEGNN shows good explainability as it learns the
importances of different meta-paths and meta-graphs. HAEGNN is also
memory-efficient, for it avoids per meta-path based matrix calculation.
Experimental results not only show HAEGNN superior performance against the
state-of-the-art methods in node classification, node clustering, and
visualization, but also demonstrate its superiorities in terms of memory
efficiency and explainability.
Related papers
- Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
We modify the Graph Neural Network (GNN) architecture so that the weight matrices are learned, separately, for the nodes in each group.
This simple-to-implement modification seems to improve performance across datasets and GNN methods.
arXiv Detail & Related papers (2023-12-16T14:09:23Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - Heterogeneous Graph Tree Networks [8.50892442127182]
Heterogeneous graph neural networks (HGNNs) have attracted increasing research interest in recent three years.
One class is meta-path-based HGNNs which either require domain knowledge to handcraft meta-paths or consume huge amount of time and memory to automatically construct meta-paths.
We propose two models: Heterogeneous Graph Tree Convolutional Network (HetGTCN) and Heterogeneous Graph Tree Attention Network (HetGTAN)
arXiv Detail & Related papers (2022-09-01T17:22:01Z) - SGAT: Simplicial Graph Attention Network [38.7842803074593]
Heterogeneous graphs have multiple node and edge types and are semantically richer than homogeneous graphs.
Many graph neural network approaches for heterogeneous graphs use metapaths to capture multi-hop interactions between nodes.
We present Simplicial Graph Attention Network (SGAT), a simplicial complex approach to represent such high-order interactions.
arXiv Detail & Related papers (2022-07-24T15:20:41Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
Heterogeneous graph neural networks (HGNNs) have powerful capability to embed rich structural and semantic information of a heterogeneous graph into node representations.
Existing HGNNs inherit many mechanisms from graph neural networks (GNNs) over homogeneous graphs, especially the attention mechanism and the multi-layer structure.
This paper conducts an in-depth and detailed study of these mechanisms and proposes Simple and Efficient Heterogeneous Graph Neural Network (SeHGNN)
arXiv Detail & Related papers (2022-07-06T10:01:46Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
We propose a new metric based on von Neumann entropy to re-examine the heterophily problem of GNNs.
We also propose a Conv-Agnostic GNN framework (CAGNNs) to enhance the performance of most GNNs on heterophily datasets.
arXiv Detail & Related papers (2022-03-19T14:26:43Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
This paper proposes a novel Structure-Aware Heterogeneous Graph Neural Network (SHGNN) to address the above limitations.
We first utilize a feature propagation module to capture the local structure information of intermediate nodes in the meta-path.
Next, we use a tree-attention aggregator to incorporate the graph structure information into the aggregation module on the meta-path.
Finally, we leverage a meta-path aggregator to fuse the information aggregated from different meta-paths.
arXiv Detail & Related papers (2021-12-12T14:18:18Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - Metapaths guided Neighbors aggregated Network for?Heterogeneous Graph
Reasoning [5.228629954007088]
We propose a Metapaths-guided Neighbors-aggregated Heterogeneous Graph Neural Network to improve performance.
We conduct extensive experiments for the proposed MHN on three real-world heterogeneous graph datasets.
arXiv Detail & Related papers (2021-03-11T05:42:06Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.