Constrained Language Models Yield Few-Shot Semantic Parsers
- URL: http://arxiv.org/abs/2104.08768v1
- Date: Sun, 18 Apr 2021 08:13:06 GMT
- Title: Constrained Language Models Yield Few-Shot Semantic Parsers
- Authors: Richard Shin, Christopher H. Lin, Sam Thomson, Charles Chen, Subhro
Roy, Emmanouil Antonios Platanios, Adam Pauls, Dan Klein, Jason Eisner,
Benjamin Van Durme
- Abstract summary: We explore the use of large pretrained language models as few-shot semantics.
The goal in semantic parsing is to generate a structured meaning representation given a natural language input.
We use language models to paraphrase inputs into a controlled sublanguage resembling English that can be automatically mapped to a target meaning representation.
- Score: 73.50960967598654
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore the use of large pretrained language models as few-shot semantic
parsers. The goal in semantic parsing is to generate a structured meaning
representation given a natural language input. However, language models are
trained to generate natural language. To bridge the gap, we use language models
to paraphrase inputs into a controlled sublanguage resembling English that can
be automatically mapped to a target meaning representation. With a small amount
of data and very little code to convert into English-like representations, we
provide a blueprint for rapidly bootstrapping semantic parsers and demonstrate
good performance on multiple tasks.
Related papers
- Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
We propose XLM-P, which contextually retrieves prompts as flexible guidance for encoding instances conditionally.
Our XLM-P enables (1) lightweight modeling of language-invariant and language-specific knowledge across languages, and (2) easy integration with other multilingual pre-training methods.
arXiv Detail & Related papers (2023-06-13T08:08:08Z) - On Robustness of Prompt-based Semantic Parsing with Large Pre-trained
Language Model: An Empirical Study on Codex [48.588772371355816]
This paper presents the first empirical study on the adversarial robustness of a large prompt-based language model of code, codex.
Our results demonstrate that the state-of-the-art (SOTA) code-language models are vulnerable to carefully crafted adversarial examples.
arXiv Detail & Related papers (2023-01-30T13:21:00Z) - Benchmarking Language Models for Code Syntax Understanding [79.11525961219591]
Pre-trained language models have demonstrated impressive performance in both natural language processing and program understanding.
In this work, we perform the first thorough benchmarking of the state-of-the-art pre-trained models for identifying the syntactic structures of programs.
Our findings point out key limitations of existing pre-training methods for programming languages, and suggest the importance of modeling code syntactic structures.
arXiv Detail & Related papers (2022-10-26T04:47:18Z) - BenchCLAMP: A Benchmark for Evaluating Language Models on Syntactic and
Semantic Parsing [55.058258437125524]
We introduce BenchCLAMP, a Benchmark to evaluate Constrained LAnguage Model Parsing.
We benchmark eight language models, including two GPT-3 variants available only through an API.
Our experiments show that encoder-decoder pretrained language models can achieve similar performance or surpass state-of-the-art methods for syntactic and semantic parsing when the model output is constrained to be valid.
arXiv Detail & Related papers (2022-06-21T18:34:11Z) - On The Ingredients of an Effective Zero-shot Semantic Parser [95.01623036661468]
We analyze zero-shot learning by paraphrasing training examples of canonical utterances and programs from a grammar.
We propose bridging these gaps using improved grammars, stronger paraphrasers, and efficient learning methods.
Our model achieves strong performance on two semantic parsing benchmarks (Scholar, Geo) with zero labeled data.
arXiv Detail & Related papers (2021-10-15T21:41:16Z) - mLUKE: The Power of Entity Representations in Multilingual Pretrained
Language Models [15.873069955407406]
We train a multilingual language model with 24 languages with entity representations.
We show the model consistently outperforms word-based pretrained models in various cross-lingual transfer tasks.
We also evaluate the model with a multilingual cloze prompt task with the mLAMA dataset.
arXiv Detail & Related papers (2021-10-15T15:28:38Z) - Pre-training Universal Language Representation [46.51685959045527]
This work introduces universal language representation learning, i.e., embeddings of different levels of linguistic units or text with quite diverse lengths in a uniform vector space.
We empirically verify that well designed pre-training scheme may effectively yield universal language representation.
arXiv Detail & Related papers (2021-05-30T09:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.