Line Segmentation from Unconstrained Handwritten Text Images using
Adaptive Approach
- URL: http://arxiv.org/abs/2104.08777v1
- Date: Sun, 18 Apr 2021 08:52:52 GMT
- Title: Line Segmentation from Unconstrained Handwritten Text Images using
Adaptive Approach
- Authors: Nidhi Gupta, Wenju Liu
- Abstract summary: Line segmentation from handwritten text images is a challenging task due to diversity and unknown variations.
An adaptive approach is used for the line segmentation from handwritten text images merging the alignment of connected component coordinates and text height.
The proposed scheme is tested on two different type of datasets; document pages having base lines and plain pages.
- Score: 10.436029791699777
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Line segmentation from handwritten text images is one of the challenging task
due to diversity and unknown variations as undefined spaces, styles,
orientations, stroke heights, overlapping, and alignments. Though abundant
researches, there is a need of improvement to achieve robustness and higher
segmentation rates. In the present work, an adaptive approach is used for the
line segmentation from handwritten text images merging the alignment of
connected component coordinates and text height. The mathematical justification
is provided for measuring the text height respective to the image size. The
novelty of the work lies in the text height calculation dynamically. The
experiments are tested on the dataset provided by the Chinese company for the
project. The proposed scheme is tested on two different type of datasets;
document pages having base lines and plain pages. Dataset is highly complex and
consists of abundant and uncommon variations in handwriting patterns. The
performance of the proposed method is tested on our datasets as well as
benchmark datasets, namely IAM and ICDAR09 to achieve 98.01% detection rate on
average. The performance is examined on the above said datasets to observe
91.99% and 96% detection rates, respectively.
Related papers
- SegHist: A General Segmentation-based Framework for Chinese Historical Document Text Line Detection [10.08588082910962]
Text line detection is a key task in historical document analysis.
We propose a general framework for historical document text detection (SegHist)
Integrating the SegHist framework with the commonly used method DB++, we develop DB-SegHist.
arXiv Detail & Related papers (2024-06-17T11:00:04Z) - Self-supervised Scene Text Segmentation with Object-centric Layered
Representations Augmented by Text Regions [22.090074821554754]
We propose a self-supervised scene text segmentation algorithm with layered decoupling of representations derived from the object-centric manner to segment images into texts and background.
On several public scene text datasets, our method outperforms the state-of-the-art unsupervised segmentation algorithms.
arXiv Detail & Related papers (2023-08-25T05:00:05Z) - Advancing Visual Grounding with Scene Knowledge: Benchmark and Method [74.72663425217522]
Visual grounding (VG) aims to establish fine-grained alignment between vision and language.
Most existing VG datasets are constructed using simple description texts.
We propose a novel benchmark of underlineScene underlineKnowledge-guided underlineVisual underlineGrounding.
arXiv Detail & Related papers (2023-07-21T13:06:02Z) - Zero-shot spatial layout conditioning for text-to-image diffusion models [52.24744018240424]
Large-scale text-to-image diffusion models have significantly improved the state of the art in generative image modelling.
We consider image generation from text associated with segments on the image canvas, which combines an intuitive natural language interface with precise spatial control over the generated content.
We propose ZestGuide, a zero-shot segmentation guidance approach that can be plugged into pre-trained text-to-image diffusion models.
arXiv Detail & Related papers (2023-06-23T19:24:48Z) - TextFormer: A Query-based End-to-End Text Spotter with Mixed Supervision [61.186488081379]
We propose TextFormer, a query-based end-to-end text spotter with Transformer architecture.
TextFormer builds upon an image encoder and a text decoder to learn a joint semantic understanding for multi-task modeling.
It allows for mutual training and optimization of classification, segmentation, and recognition branches, resulting in deeper feature sharing.
arXiv Detail & Related papers (2023-06-06T03:37:41Z) - SceneComposer: Any-Level Semantic Image Synthesis [80.55876413285587]
We propose a new framework for conditional image synthesis from semantic layouts of any precision levels.
The framework naturally reduces to text-to-image (T2I) at the lowest level with no shape information, and it becomes segmentation-to-image (S2I) at the highest level.
We introduce several novel techniques to address the challenges coming with this new setup.
arXiv Detail & Related papers (2022-11-21T18:59:05Z) - BN-HTRd: A Benchmark Dataset for Document Level Offline Bangla
Handwritten Text Recognition (HTR) and Line Segmentation [0.0]
We introduce a new dataset for offline Handwritten Text Recognition (HTR) from images of Bangla scripts comprising words, lines, and document-level annotations.
The BN-HTRd dataset is based on the BBC Bangla News corpus, meant to act as ground truth texts.
Our dataset includes 788 images of handwritten pages produced by approximately 150 different writers.
arXiv Detail & Related papers (2022-05-29T22:56:26Z) - Towards End-to-End Unified Scene Text Detection and Layout Analysis [60.68100769639923]
We introduce the task of unified scene text detection and layout analysis.
The first hierarchical scene text dataset is introduced to enable this novel research task.
We also propose a novel method that is able to simultaneously detect scene text and form text clusters in a unified way.
arXiv Detail & Related papers (2022-03-28T23:35:45Z) - Rethinking Text Segmentation: A Novel Dataset and A Text-Specific
Refinement Approach [34.63444886780274]
Text segmentation is a prerequisite in real-world text-related tasks.
We introduce Text Refinement Network (TexRNet), a novel text segmentation approach.
TexRNet consistently improves text segmentation performance by nearly 2% compared to other state-of-the-art segmentation methods.
arXiv Detail & Related papers (2020-11-27T22:50:09Z) - Using Text to Teach Image Retrieval [47.72498265721957]
We build on the concept of image manifold to represent the feature space of images, learned via neural networks, as a graph.
We augment the manifold samples with geometrically aligned text, thereby using a plethora of sentences to teach us about images.
The experimental results show that the joint embedding manifold is a robust representation, allowing it to be a better basis to perform image retrieval.
arXiv Detail & Related papers (2020-11-19T16:09:14Z) - DGST : Discriminator Guided Scene Text detector [11.817428636084305]
This paper proposes a detector framework based on the conditional generative adversarial networks to improve the segmentation effect of scene text detection.
Experiments on standard datasets demonstrate that the proposed D GST brings noticeable gain and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2020-02-28T01:47:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.