Bright multiplexed source of indistinguishable single photons with
tunable GHz-bandwidth at room temperature
- URL: http://arxiv.org/abs/2104.09337v1
- Date: Mon, 19 Apr 2021 14:23:33 GMT
- Title: Bright multiplexed source of indistinguishable single photons with
tunable GHz-bandwidth at room temperature
- Authors: Omri Davidson, Ran Finkelstein, Eilon Poem, and Ofer Firstenberg
- Abstract summary: We realize a spatially-multiplexed heralded source of single photons that are inherently compatible with the commonly employed D2 line of rubidium.
Our source is based on four-wave mixing in hot rubidium vapor, requiring no laser cooling or optical cavities, and generates single photons with high rate and low noise.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Narrowband single photons that couple well to atomic ensembles could prove
essential for future quantum networks, but the efficient generation of such
photons remains an outstanding challenge. We realize a spatially-multiplexed
heralded source of single photons that are inherently compatible with the
commonly employed D2 line of rubidium. Our source is based on four-wave mixing
in hot rubidium vapor, requiring no laser cooling or optical cavities, and
generates single photons with high rate and low noise. We use Hong-Ou-Mandel
interference to verify the indistinguishability of the photons generated in two
different (multiplexed) channels. We further demonstrate a five-fold tunability
of the photons' temporal width. The experimental results are well reproduced by
a theoretical model.
Related papers
- Quantification of Photon Fusion for Genuine Multiphoton Quantum Correlations [1.2898860098268203]
Two-photon interference has been extensively utilized in creating multiphoton entanglement.
No experimental evidence exists that the full capability of photon fusion can be utterly quantified like a quantum entity.
Our characterization faithfully measures the whole abilities of photon fusion in the experiment to create and preserve entangled photon pairs.
arXiv Detail & Related papers (2024-01-08T12:46:53Z) - A Highly Efficient and Pure Few-Photon Source on Chip [4.016925380411567]
We report on multi-photon statistics of correlated twin beams produced in a periodic poled micro-ring resonator on thin-film lithium niobate.
The findings of our research highlight the potential of this nanophotonic platform for generating non-classical, few-photon states.
arXiv Detail & Related papers (2023-09-26T19:54:57Z) - Wavelength-tunable high-fidelity entangled photon sources enabled by dual Stark effects [24.884496380660117]
We demonstrate wavelength-tunable entangled photon sources based on droplet-etched GaAs quantum dots.
The emission wavelength can be tuned by 1 meV while preserving an entanglement fidelity f exceeding 0.955(1) in the entire tuning range.
arXiv Detail & Related papers (2023-08-09T07:26:09Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Strong single-photon to two-photon bundles emission in spin-1
Jaynes-Cummings model [3.230778132936486]
We study the nonclassical photon emission in a single spin-1 atom coupled to an optical cavity with constructing a spin-1 Jaynes-Cummings model.
The photon emission exhibit high-quality single photon and two-photon bundles properties with large photon numbers in the cavity and atom driven cases.
arXiv Detail & Related papers (2022-09-27T13:52:41Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Improved heralded single-photon source with a photon-number-resolving
superconducting nanowire detector [0.0]
We herald a single photon at telecommunication wavelength using a superconducting nanowire detector.
We develop an analytical model using a phase-space formalism that encompasses all multiphoton effects and relevant imperfections.
Our experiment, built using fiber-coupled and off-the-shelf components, delineates a path to engineering ideal sources of single photons.
arXiv Detail & Related papers (2021-12-21T18:48:34Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.