A Practical Method for Constructing Equivariant Multilayer Perceptrons
for Arbitrary Matrix Groups
- URL: http://arxiv.org/abs/2104.09459v1
- Date: Mon, 19 Apr 2021 17:21:54 GMT
- Title: A Practical Method for Constructing Equivariant Multilayer Perceptrons
for Arbitrary Matrix Groups
- Authors: Marc Finzi, Max Welling, Andrew Gordon Wilson
- Abstract summary: We provide a completely general algorithm for solving for the equivariant layers of matrix groups.
In addition to recovering solutions from other works as special cases, we construct multilayer perceptrons equivariant to multiple groups that have never been tackled before.
Our approach outperforms non-equivariant baselines, with applications to particle physics and dynamical systems.
- Score: 115.58550697886987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Symmetries and equivariance are fundamental to the generalization of neural
networks on domains such as images, graphs, and point clouds. Existing work has
primarily focused on a small number of groups, such as the translation,
rotation, and permutation groups. In this work we provide a completely general
algorithm for solving for the equivariant layers of matrix groups. In addition
to recovering solutions from other works as special cases, we construct
multilayer perceptrons equivariant to multiple groups that have never been
tackled before, including $\mathrm{O}(1,3)$, $\mathrm{O}(5)$, $\mathrm{Sp}(n)$,
and the Rubik's cube group. Our approach outperforms non-equivariant baselines,
with applications to particle physics and dynamical systems. We release our
software library to enable researchers to construct equivariant layers for
arbitrary matrix groups.
Related papers
- Lie Group Decompositions for Equivariant Neural Networks [12.139222986297261]
We show how convolution kernels can be parametrized to build models equivariant with respect to affine transformations.
We evaluate the robustness and out-of-distribution generalisation capability of our model on the benchmark affine-invariant classification task.
arXiv Detail & Related papers (2023-10-17T16:04:33Z) - An Algorithm for Computing with Brauer's Group Equivariant Neural
Network Layers [0.0]
We present an algorithm for multiplying a vector by any weight matrix for each of these groups, using category theoretic constructions to implement the procedure.
We show that our approach extends to the symmetric group, $S_n$, recovering the algorithm of arXiv:2303.06208 in the process.
arXiv Detail & Related papers (2023-04-27T13:06:07Z) - Geometric Clifford Algebra Networks [53.456211342585824]
We propose Geometric Clifford Algebra Networks (GCANs) for modeling dynamical systems.
GCANs are based on symmetry group transformations using geometric (Clifford) algebras.
arXiv Detail & Related papers (2023-02-13T18:48:33Z) - How Jellyfish Characterise Alternating Group Equivariant Neural Networks [0.0]
We find a basis for the learnable, linear, $A_n$-equivariant layer functions between such tensor power spaces in the standard basis of $mathbbRn$.
We also describe how our approach generalises to the construction of neural networks that are equivariant to local symmetries.
arXiv Detail & Related papers (2023-01-24T17:39:10Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
We design a deep-learning algorithm for the discovery and identification of the continuous group of symmetries present in a labeled dataset.
We use fully connected neural networks to model the transformations symmetry and the corresponding generators.
Our study also opens the door for using a machine learning approach in the mathematical study of Lie groups and their properties.
arXiv Detail & Related papers (2023-01-13T16:25:25Z) - Brauer's Group Equivariant Neural Networks [0.0]
We provide a full characterisation of all of the possible group equivariant neural networks whose layers are some tensor power of $mathbbRn$.
We find a spanning set of matrices for the learnable, linear, equivariant layer functions between such tensor power spaces.
arXiv Detail & Related papers (2022-12-16T18:08:51Z) - Geometric Deep Learning and Equivariant Neural Networks [0.9381376621526817]
We survey the mathematical foundations of geometric deep learning, focusing on group equivariant and gauge equivariant neural networks.
We develop gauge equivariant convolutional neural networks on arbitrary manifold $mathcalM$ using principal bundles with structure group $K$ and equivariant maps between sections of associated vector bundles.
We analyze several applications of this formalism, including semantic segmentation and object detection networks.
arXiv Detail & Related papers (2021-05-28T15:41:52Z) - LieTransformer: Equivariant self-attention for Lie Groups [49.9625160479096]
Group equivariant neural networks are used as building blocks of group invariant neural networks.
We extend the scope of the literature to self-attention, that is emerging as a prominent building block of deep learning models.
We propose the LieTransformer, an architecture composed of LieSelfAttention layers that are equivariant to arbitrary Lie groups and their discrete subgroups.
arXiv Detail & Related papers (2020-12-20T11:02:49Z) - Stochastic Flows and Geometric Optimization on the Orthogonal Group [52.50121190744979]
We present a new class of geometrically-driven optimization algorithms on the orthogonal group $O(d)$.
We show that our methods can be applied in various fields of machine learning including deep, convolutional and recurrent neural networks, reinforcement learning, flows and metric learning.
arXiv Detail & Related papers (2020-03-30T15:37:50Z) - Generalizing Convolutional Neural Networks for Equivariance to Lie
Groups on Arbitrary Continuous Data [52.78581260260455]
We propose a general method to construct a convolutional layer that is equivariant to transformations from any specified Lie group.
We apply the same model architecture to images, ball-and-stick molecular data, and Hamiltonian dynamical systems.
arXiv Detail & Related papers (2020-02-25T17:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.