Transductive Learning for Abstractive News Summarization
- URL: http://arxiv.org/abs/2104.09500v1
- Date: Sat, 17 Apr 2021 17:33:12 GMT
- Title: Transductive Learning for Abstractive News Summarization
- Authors: Arthur Bra\v{z}inskas, Mengwen Liu, Ramesh Nallapati, Sujith Ravi,
Markus Dreyer
- Abstract summary: We propose the first application of transductive learning to summarization.
We show that our approach yields state-of-the-art results on CNN/DM and NYT datasets.
- Score: 24.03781438153328
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pre-trained language models have recently advanced abstractive summarization.
These models are further fine-tuned on human-written references before summary
generation in test time. In this work, we propose the first application of
transductive learning to summarization. In this paradigm, a model can learn
from the test set's input before inference. To perform transduction, we propose
to utilize input document summarizing sentences to construct references for
learning in test time. These sentences are often compressed and fused to form
abstractive summaries and provide omitted details and additional context to the
reader. We show that our approach yields state-of-the-art results on CNN/DM and
NYT datasets. For instance, we achieve over 1 ROUGE-L point improvement on
CNN/DM. Further, we show the benefits of transduction from older to more recent
news. Finally, through human and automatic evaluation, we show that our
summaries become more abstractive and coherent.
Related papers
- StreamHover: Livestream Transcript Summarization and Annotation [54.41877742041611]
We present StreamHover, a framework for annotating and summarizing livestream transcripts.
With a total of over 500 hours of videos annotated with both extractive and abstractive summaries, our benchmark dataset is significantly larger than currently existing annotated corpora.
We show that our model generalizes better and improves performance over strong baselines.
arXiv Detail & Related papers (2021-09-11T02:19:37Z) - ARMAN: Pre-training with Semantically Selecting and Reordering of
Sentences for Persian Abstractive Summarization [7.16879432974126]
We propose ARMAN, a Transformer-based encoder-decoder model pre-trained with three novel objectives to address this issue.
In ARMAN, salient sentences from a document are selected according to a modified semantic score to be masked and form a pseudo summary.
We show that our proposed model achieves state-of-the-art performance on all six summarization tasks measured by ROUGE and BERTScore.
arXiv Detail & Related papers (2021-09-09T08:35:39Z) - The Summary Loop: Learning to Write Abstractive Summaries Without
Examples [21.85348918324668]
This work presents a new approach to unsupervised abstractive summarization based on maximizing a combination of coverage and fluency for a given length constraint.
Key terms are masked out of the original document and must be filled in by a coverage model using the current generated summary.
When tested on popular news summarization datasets, the method outperforms previous unsupervised methods by more than 2 R-1 points.
arXiv Detail & Related papers (2021-05-11T23:19:46Z) - Automated News Summarization Using Transformers [4.932130498861987]
We will be presenting a comprehensive comparison of a few transformer architecture based pre-trained models for text summarization.
For analysis and comparison, we have used the BBC news dataset that contains text data that can be used for summarization and human generated summaries.
arXiv Detail & Related papers (2021-04-23T04:22:33Z) - Unsupervised Extractive Summarization by Pre-training Hierarchical
Transformers [107.12125265675483]
Unsupervised extractive document summarization aims to select important sentences from a document without using labeled summaries during training.
Existing methods are mostly graph-based with sentences as nodes and edge weights measured by sentence similarities.
We find that transformer attentions can be used to rank sentences for unsupervised extractive summarization.
arXiv Detail & Related papers (2020-10-16T08:44:09Z) - Few-Shot Learning for Opinion Summarization [117.70510762845338]
Opinion summarization is the automatic creation of text reflecting subjective information expressed in multiple documents.
In this work, we show that even a handful of summaries is sufficient to bootstrap generation of the summary text.
Our approach substantially outperforms previous extractive and abstractive methods in automatic and human evaluation.
arXiv Detail & Related papers (2020-04-30T15:37:38Z) - Exploring Explainable Selection to Control Abstractive Summarization [51.74889133688111]
We develop a novel framework that focuses on explainability.
A novel pair-wise matrix captures the sentence interactions, centrality, and attribute scores.
A sentence-deployed attention mechanism in the abstractor ensures the final summary emphasizes the desired content.
arXiv Detail & Related papers (2020-04-24T14:39:34Z) - Unsupervised Opinion Summarization with Noising and Denoising [85.49169453434554]
We create a synthetic dataset from a corpus of user reviews by sampling a review, pretending it is a summary, and generating noisy versions thereof.
At test time, the model accepts genuine reviews and generates a summary containing salient opinions, treating those that do not reach consensus as noise.
arXiv Detail & Related papers (2020-04-21T16:54:57Z) - Pre-training for Abstractive Document Summarization by Reinstating
Source Text [105.77348528847337]
This paper presents three pre-training objectives which allow us to pre-train a Seq2Seq based abstractive summarization model on unlabeled text.
Experiments on two benchmark summarization datasets show that all three objectives can improve performance upon baselines.
arXiv Detail & Related papers (2020-04-04T05:06:26Z) - Learning by Semantic Similarity Makes Abstractive Summarization Better [13.324006587838522]
We compare the generated summaries from recent LM, BART, and the reference summaries from a benchmark dataset, CNN/DM.
Interestingly, model-generated summaries receive higher scores relative to reference summaries.
arXiv Detail & Related papers (2020-02-18T17:59:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.