Understanding Synonymous Referring Expressions via Contrastive Features
- URL: http://arxiv.org/abs/2104.10156v1
- Date: Tue, 20 Apr 2021 17:56:24 GMT
- Title: Understanding Synonymous Referring Expressions via Contrastive Features
- Authors: Yi-Wen Chen, Yi-Hsuan Tsai, Ming-Hsuan Yang
- Abstract summary: We develop an end-to-end trainable framework to learn contrastive features on the image and object instance levels.
We conduct extensive experiments to evaluate the proposed algorithm on several benchmark datasets.
- Score: 105.36814858748285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Referring expression comprehension aims to localize objects identified by
natural language descriptions. This is a challenging task as it requires
understanding of both visual and language domains. One nature is that each
object can be described by synonymous sentences with paraphrases, and such
varieties in languages have critical impact on learning a comprehension model.
While prior work usually treats each sentence and attends it to an object
separately, we focus on learning a referring expression comprehension model
that considers the property in synonymous sentences. To this end, we develop an
end-to-end trainable framework to learn contrastive features on the image and
object instance levels, where features extracted from synonymous sentences to
describe the same object should be closer to each other after mapping to the
visual domain. We conduct extensive experiments to evaluate the proposed
algorithm on several benchmark datasets, and demonstrate that our method
performs favorably against the state-of-the-art approaches. Furthermore, since
the varieties in expressions become larger across datasets when they describe
objects in different ways, we present the cross-dataset and transfer learning
settings to validate the ability of our learned transferable features.
Related papers
- Investigating Idiomaticity in Word Representations [9.208145117062339]
We focus on noun compounds of varying levels of idiomaticity in two languages (English and Portuguese)
We present a dataset of minimal pairs containing human idiomaticity judgments for each noun compound at both type and token levels.
We define a set of fine-grained metrics of Affinity and Scaled Similarity to determine how sensitive the models are to perturbations that may lead to changes in idiomaticity.
arXiv Detail & Related papers (2024-11-04T21:05:01Z) - Position-Aware Contrastive Alignment for Referring Image Segmentation [65.16214741785633]
We present a position-aware contrastive alignment network (PCAN) to enhance the alignment of multi-modal features.
Our PCAN consists of two modules: 1) Position Aware Module (PAM), which provides position information of all objects related to natural language descriptions, and 2) Contrastive Language Understanding Module (CLUM), which enhances multi-modal alignment.
arXiv Detail & Related papers (2022-12-27T09:13:19Z) - A Linguistic Investigation of Machine Learning based Contradiction
Detection Models: An Empirical Analysis and Future Perspectives [0.34998703934432673]
We analyze two Natural Language Inference data sets with respect to their linguistic features.
The goal is to identify those syntactic and semantic properties that are particularly hard to comprehend for a machine learning model.
arXiv Detail & Related papers (2022-10-19T10:06:03Z) - Perceptual Grouping in Contrastive Vision-Language Models [59.1542019031645]
We show how vision-language models are able to understand where objects reside within an image and group together visually related parts of the imagery.
We propose a minimal set of modifications that results in models that uniquely learn both semantic and spatial information.
arXiv Detail & Related papers (2022-10-18T17:01:35Z) - Self-Supervised Visual Representation Learning with Semantic Grouping [50.14703605659837]
We tackle the problem of learning visual representations from unlabeled scene-centric data.
We propose contrastive learning from data-driven semantic slots, namely SlotCon, for joint semantic grouping and representation learning.
arXiv Detail & Related papers (2022-05-30T17:50:59Z) - Context-LGM: Leveraging Object-Context Relation for Context-Aware Object
Recognition [48.5398871460388]
We propose a novel Contextual Latent Generative Model (Context-LGM), which considers the object-context relation and models it in a hierarchical manner.
To infer contextual features, we reformulate the objective function of Variational Auto-Encoder (VAE), where contextual features are learned as a posterior conditioned distribution on the object.
The effectiveness of our method is verified by state-of-the-art performance on two context-aware object recognition tasks.
arXiv Detail & Related papers (2021-10-08T11:31:58Z) - Contrastive Video-Language Segmentation [41.1635597261304]
We focus on the problem of segmenting a certain object referred by a natural language sentence in video content.
We propose to interwind the visual and linguistic modalities in an explicit way via the contrastive learning objective.
arXiv Detail & Related papers (2021-09-29T01:40:58Z) - COBE: Contextualized Object Embeddings from Narrated Instructional Video [52.73710465010274]
We propose a new framework for learning Contextualized OBject Embeddings from automatically-transcribed narrations of instructional videos.
We leverage the semantic and compositional structure of language by training a visual detector to predict a contextualized word embedding of the object and its associated narration.
Our experiments show that our detector learns to predict a rich variety of contextual object information, and that it is highly effective in the settings of few-shot and zero-shot learning.
arXiv Detail & Related papers (2020-07-14T19:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.