MBRL-Lib: A Modular Library for Model-based Reinforcement Learning
- URL: http://arxiv.org/abs/2104.10159v1
- Date: Tue, 20 Apr 2021 17:58:22 GMT
- Title: MBRL-Lib: A Modular Library for Model-based Reinforcement Learning
- Authors: Luis Pineda, Brandon Amos, Amy Zhang, Nathan O. Lambert, Roberto
Calandra
- Abstract summary: We present MBRL-Lib -- a machine learning library for model-based reinforcement learning in continuous state-action spaces based on PyTorch.
It is designed as a platform for both researchers, to easily develop, debug and compare new algorithms, and non-expert user, to lower the entry-bar of deploying state-of-the-art algorithms.
- Score: 13.467075854633213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model-based reinforcement learning is a compelling framework for
data-efficient learning of agents that interact with the world. This family of
algorithms has many subcomponents that need to be carefully selected and tuned.
As a result the entry-bar for researchers to approach the field and to deploy
it in real-world tasks can be daunting. In this paper, we present MBRL-Lib -- a
machine learning library for model-based reinforcement learning in continuous
state-action spaces based on PyTorch. MBRL-Lib is designed as a platform for
both researchers, to easily develop, debug and compare new algorithms, and
non-expert user, to lower the entry-bar of deploying state-of-the-art
algorithms. MBRL-Lib is open-source at
https://github.com/facebookresearch/mbrl-lib.
Related papers
- Bayes Adaptive Monte Carlo Tree Search for Offline Model-based Reinforcement Learning [5.663006149337036]
offline model-based reinforcement learning (MBRL) is a powerful approach for data-driven decision-making and control.
There could be various MDPs that behave identically on the offline dataset and so dealing with the uncertainty about the true MDP can be challenging.
We introduce a novel Bayes Adaptive Monte-Carlo planning algorithm capable of solving BAMDPs in continuous state and action spaces.
arXiv Detail & Related papers (2024-10-15T03:36:43Z) - OpenRL: A Unified Reinforcement Learning Framework [19.12129820612253]
We present OpenRL, an advanced reinforcement learning (RL) framework.
It is designed to accommodate a diverse array of tasks, from single-agent challenges to complex multi-agent systems.
It integrates Natural Language Processing (NLP) with RL, enabling researchers to address a combination of RL training and language-centric tasks effectively.
arXiv Detail & Related papers (2023-12-20T12:04:06Z) - SequeL: A Continual Learning Library in PyTorch and JAX [50.33956216274694]
SequeL is a library for Continual Learning that supports both PyTorch and JAX frameworks.
It provides a unified interface for a wide range of Continual Learning algorithms, including regularization-based approaches, replay-based approaches, and hybrid approaches.
We release SequeL as an open-source library, enabling researchers and developers to easily experiment and extend the library for their own purposes.
arXiv Detail & Related papers (2023-04-21T10:00:22Z) - A Unified Framework for Alternating Offline Model Training and Policy
Learning [62.19209005400561]
In offline model-based reinforcement learning, we learn a dynamic model from historically collected data, and utilize the learned model and fixed datasets for policy learning.
We develop an iterative offline MBRL framework, where we maximize a lower bound of the true expected return.
With the proposed unified model-policy learning framework, we achieve competitive performance on a wide range of continuous-control offline reinforcement learning datasets.
arXiv Detail & Related papers (2022-10-12T04:58:51Z) - MARLlib: A Scalable and Efficient Multi-agent Reinforcement Learning
Library [82.77446613763809]
We present MARLlib, a library designed to offer fast development for multi-agent tasks and algorithm combinations.
MARLlib can effectively disentangle the intertwined nature of the multi-agent task and the learning process of the algorithm.
The library's source code is publicly accessible on GitHub.
arXiv Detail & Related papers (2022-10-11T03:11:12Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
We propose a meta-learned addressing model called RAMa that provides training samples for the MBRL agent taken from task-agnostic storage.
The model is trained to maximize the expected agent's performance by selecting promising trajectories solving prior tasks from the storage.
arXiv Detail & Related papers (2021-10-25T20:02:57Z) - MALib: A Parallel Framework for Population-based Multi-agent
Reinforcement Learning [61.28547338576706]
Population-based multi-agent reinforcement learning (PB-MARL) refers to the series of methods nested with reinforcement learning (RL) algorithms.
We present MALib, a scalable and efficient computing framework for PB-MARL.
arXiv Detail & Related papers (2021-06-05T03:27:08Z) - Integrating Distributed Architectures in Highly Modular RL Libraries [4.297070083645049]
Most popular reinforcement learning libraries advocate for highly modular agent composability.
We propose a versatile approach that allows the definition of RL agents at different scales through independent reusable components.
arXiv Detail & Related papers (2020-07-06T10:22:07Z) - A Game Theoretic Framework for Model Based Reinforcement Learning [39.45066100705418]
Model-based reinforcement learning (MBRL) has recently gained immense interest due to its potential for sample efficiency and ability to incorporate off-policy data.
We develop a new framework that casts MBRL as a game between: (1) a policy player, which attempts to maximize rewards under the learned model; (2) a model player, which attempts to fit the real-world data collected by the policy player.
Our framework is consistent with and provides a clear basis for gradients known to be important in practice from prior works.
arXiv Detail & Related papers (2020-04-16T17:51:45Z) - MushroomRL: Simplifying Reinforcement Learning Research [60.70556446270147]
MushroomRL is an open-source Python library developed to simplify the process of implementing and running Reinforcement Learning (RL) experiments.
Compared to other available libraries, MushroomRL has been created with the purpose of providing a comprehensive and flexible framework to minimize the effort in implementing and testing novel RL methodologies.
arXiv Detail & Related papers (2020-01-04T17:23:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.