Algorithms for ridge estimation with convergence guarantees
- URL: http://arxiv.org/abs/2104.12314v1
- Date: Mon, 26 Apr 2021 01:57:04 GMT
- Title: Algorithms for ridge estimation with convergence guarantees
- Authors: Wanli Qiao and Wolfgang Polonik
- Abstract summary: We consider the extraction of filamentary structure from a point cloud.
The filaments are modeled as ridge lines or higher dimensional ridges of an underlying density.
We propose two novel algorithms, and provide theoretical guarantees for their convergences.
- Score: 1.90365714903665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The extraction of filamentary structure from a point cloud is discussed. The
filaments are modeled as ridge lines or higher dimensional ridges of an
underlying density. We propose two novel algorithms, and provide theoretical
guarantees for their convergences. We consider the new algorithms as
alternatives to the Subspace Constraint Mean Shift (SCMS) algorithm that do not
suffer from a shortcoming of the SCMS that is also revealed in this paper.
Related papers
- Indexed Minimum Empirical Divergence-Based Algorithms for Linear Bandits [55.938644481736446]
Indexed Minimum Empirical Divergence (IMED) is a highly effective approach to the multi-armed bandit problem.
It has been observed to empirically outperform UCB-based algorithms and Thompson Sampling.
We present novel linear versions of the IMED algorithm, which we call the family of LinIMED algorithms.
arXiv Detail & Related papers (2024-05-24T04:11:58Z) - Bounded Projection Matrix Approximation with Applications to Community
Detection [1.8876415010297891]
We introduce a new differentiable convex penalty and derive an alternating direction method of multipliers (ADMM) algorithm.
Numerical experiments demonstrate the superiority of our algorithm over its competitors.
arXiv Detail & Related papers (2023-05-21T06:55:10Z) - Adaptive Stochastic Optimisation of Nonconvex Composite Objectives [2.1700203922407493]
We propose and analyse a family of generalised composite mirror descent algorithms.
With adaptive step sizes, the proposed algorithms converge without requiring prior knowledge of the problem.
We exploit the low-dimensional structure of the decision sets for high-dimensional problems.
arXiv Detail & Related papers (2022-11-21T18:31:43Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Linear Convergence of the Subspace Constrained Mean Shift Algorithm:
From Euclidean to Directional Data [3.60425753550939]
We argue that the SCMS algorithm is a special variant of a subspace constrained gradient ascent algorithm with an adaptive step size.
We prove the linear convergence of our proposed directional SCMS algorithm.
arXiv Detail & Related papers (2021-04-29T01:46:35Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
We introduce a novel algorithm improving over the state-of-the-art along multiple dimensions.
We establish minimax optimality for any learning horizon in the special case of non-contextual linear bandits.
arXiv Detail & Related papers (2020-10-23T09:12:47Z) - Linear Convergent Decentralized Optimization with Compression [50.44269451541387]
Existing decentralized algorithms with compression mainly focus on compressing DGD-type algorithms.
Motivated by primal-dual algorithms, this paper proposes first underlineLinunderlineEAr convergent.
underlineDecentralized with compression, LEAD.
arXiv Detail & Related papers (2020-07-01T04:35:00Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
We introduce a framework for designing primal methods under the decentralized optimization setting where local functions are smooth and strongly convex.
Our approach consists of approximately solving a sequence of sub-problems induced by the accelerated augmented Lagrangian method.
When coupled with accelerated gradient descent, our framework yields a novel primal algorithm whose convergence rate is optimal and matched by recently derived lower bounds.
arXiv Detail & Related papers (2020-06-11T18:49:06Z) - SONIA: A Symmetric Blockwise Truncated Optimization Algorithm [2.9923891863939938]
This work presents a new algorithm for empirical risk.
The algorithm bridges the gap between first- and second-order search methods by computing a second-order search-type update in one subspace, coupled with a scaled steepest descent step in the Theoretical complement.
arXiv Detail & Related papers (2020-06-06T19:28:14Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.