Algorithms for ridge estimation with convergence guarantees
- URL: http://arxiv.org/abs/2104.12314v2
- Date: Tue, 31 Dec 2024 09:11:43 GMT
- Title: Algorithms for ridge estimation with convergence guarantees
- Authors: Wanli Qiao, Wolfgang Polonik,
- Abstract summary: We consider the extraction of filamentary structure from a point cloud.
The filaments are modeled as ridge lines or ridges of an underlying density.
We propose two novel algorithms, and provide theoretical guarantees for their convergences.
- Score: 1.3351610617039973
- License:
- Abstract: The extraction of filamentary structure from a point cloud is discussed. The filaments are modeled as ridge lines or higher dimensional ridges of an underlying density. We propose two novel algorithms, and provide theoretical guarantees for their convergences, by which we mean that the algorithms can asymptotically recover the full ridge set. We consider the new algorithms as alternatives to the Subspace Constrained Mean Shift (SCMS) algorithm for which no such theoretical guarantees are known.
Related papers
- Bregman-divergence-based Arimoto-Blahut algorithm [53.64687146666141]
We generalize the Arimoto-Blahut algorithm to a general function defined over Bregman-divergence system.
We propose a convex-optimization-free algorithm that can be applied to classical and quantum rate-distortion theory.
arXiv Detail & Related papers (2024-08-10T06:16:24Z) - Adaptive Stochastic Optimisation of Nonconvex Composite Objectives [2.1700203922407493]
We propose and analyse a family of generalised composite mirror descent algorithms.
With adaptive step sizes, the proposed algorithms converge without requiring prior knowledge of the problem.
We exploit the low-dimensional structure of the decision sets for high-dimensional problems.
arXiv Detail & Related papers (2022-11-21T18:31:43Z) - Uniform-PAC Bounds for Reinforcement Learning with Linear Function
Approximation [92.3161051419884]
We study reinforcement learning with linear function approximation.
Existing algorithms only have high-probability regret and/or Probably Approximately Correct (PAC) sample complexity guarantees.
We propose a new algorithm called FLUTE, which enjoys uniform-PAC convergence to the optimal policy with high probability.
arXiv Detail & Related papers (2021-06-22T08:48:56Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - New Riemannian preconditioned algorithms for tensor completion via
polyadic decomposition [10.620193291237262]
These algorithms exploit a non-Euclidean metric on the product space of the factor matrices of the low-rank tensor in the polyadic decomposition form.
We prove that the proposed gradient descent algorithm globally converges to a stationary point of the tensor completion problem.
Numerical results on synthetic and real-world data suggest that the proposed algorithms are more efficient in memory and time compared to state-of-the-art algorithms.
arXiv Detail & Related papers (2021-01-26T22:11:06Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
We introduce a novel algorithm improving over the state-of-the-art along multiple dimensions.
We establish minimax optimality for any learning horizon in the special case of non-contextual linear bandits.
arXiv Detail & Related papers (2020-10-23T09:12:47Z) - Consistency of Anchor-based Spectral Clustering [0.0]
Anchor-based techniques reduce the computational complexity of spectral clustering algorithms.
We show that it is amenable to rigorous analysis, as well as being effective in practice.
We find that it is competitive with the state-of-the-art LSC method of Chen and Cai.
arXiv Detail & Related papers (2020-06-24T18:34:41Z) - SONIA: A Symmetric Blockwise Truncated Optimization Algorithm [2.9923891863939938]
This work presents a new algorithm for empirical risk.
The algorithm bridges the gap between first- and second-order search methods by computing a second-order search-type update in one subspace, coupled with a scaled steepest descent step in the Theoretical complement.
arXiv Detail & Related papers (2020-06-06T19:28:14Z) - Lagrangian Decomposition for Neural Network Verification [148.0448557991349]
A fundamental component of neural network verification is the computation of bounds on the values their outputs can take.
We propose a novel approach based on Lagrangian Decomposition.
We show that we obtain bounds comparable with off-the-shelf solvers in a fraction of their running time.
arXiv Detail & Related papers (2020-02-24T17:55:10Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.