A Low-Complexity MIMO Channel Estimator with Implicit Structure of a
Convolutional Neural Network
- URL: http://arxiv.org/abs/2104.12667v1
- Date: Mon, 26 Apr 2021 15:52:29 GMT
- Title: A Low-Complexity MIMO Channel Estimator with Implicit Structure of a
Convolutional Neural Network
- Authors: B. Fesl, N. Turan, M. Koller, and W. Utschick
- Abstract summary: We propose a low-complexity convolutional neural network estimator which learns the minimum mean squared error channel estimator for single-antenna users.
We derive a high-level description of the estimator for arbitrary choices of the pilot sequence.
numerically results demonstrate performance gains compared to state-of-the-art algorithms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A low-complexity convolutional neural network estimator which learns the
minimum mean squared error channel estimator for single-antenna users was
recently proposed. We generalize the architecture to the estimation of MIMO
channels with multiple-antenna users and incorporate complexity-reducing
assumptions based on the channel model. Learning is used in this context to
combat the mismatch between the assumptions and real scenarios where the
assumptions may not hold. We derive a high-level description of the estimator
for arbitrary choices of the pilot sequence. It turns out that the proposed
estimator has the implicit structure of a two-layered convolutional neural
network, where the derived quantities can be relaxed to learnable parameters.
We show that by using discrete Fourier transform based pilots the number of
learnable network parameters decreases significantly and the online run time of
the estimator is reduced considerably, where we can achieve linearithmic order
of complexity in the number of antennas. Numerical results demonstrate
performance gains compared to state-of-the-art algorithms from the field of
compressive sensing or covariance estimation of the same or even higher
computational complexity. The simulation code is available online.
Related papers
- Multilevel CNNs for Parametric PDEs based on Adaptive Finite Elements [0.0]
A neural network architecture is presented that exploits the multilevel properties of high-dimensional parameter-dependent partial differential equations.
The network is trained with data on adaptively refined finite element meshes.
A complete convergence and complexity analysis is carried out for the adaptive multilevel scheme.
arXiv Detail & Related papers (2024-08-20T13:32:11Z) - Adaptive Multilevel Neural Networks for Parametric PDEs with Error Estimation [0.0]
A neural network architecture is presented to solve high-dimensional parameter-dependent partial differential equations (pPDEs)
It is constructed to map parameters of the model data to corresponding finite element solutions.
It outputs a coarse grid solution and a series of corrections as produced in an adaptive finite element method (AFEM)
arXiv Detail & Related papers (2024-03-19T11:34:40Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
A new hybrid predictive Reduced Order Model (ROM) is proposed to solve reacting flow problems.
The number of degrees of freedom is reduced from thousands of temporal points to a few POD modes with their corresponding temporal coefficients.
Two different deep learning architectures have been tested to predict the temporal coefficients.
arXiv Detail & Related papers (2023-01-24T08:39:20Z) - A Recursively Recurrent Neural Network (R2N2) Architecture for Learning
Iterative Algorithms [64.3064050603721]
We generalize Runge-Kutta neural network to a recurrent neural network (R2N2) superstructure for the design of customized iterative algorithms.
We demonstrate that regular training of the weight parameters inside the proposed superstructure on input/output data of various computational problem classes yields similar iterations to Krylov solvers for linear equation systems, Newton-Krylov solvers for nonlinear equation systems, and Runge-Kutta solvers for ordinary differential equations.
arXiv Detail & Related papers (2022-11-22T16:30:33Z) - Bagged Polynomial Regression and Neural Networks [0.0]
Series and dataset regression are able to approximate the same function classes as neural networks.
textitbagged regression (BPR) is an attractive alternative to neural networks.
BPR performs as well as neural networks in crop classification using satellite data.
arXiv Detail & Related papers (2022-05-17T19:55:56Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - Probabilistic partition of unity networks: clustering based deep
approximation [0.0]
Partition of unity networks (POU-Nets) have been shown capable of realizing algebraic convergence rates for regression and solution of PDEs.
We enrich POU-Nets with a Gaussian noise model to obtain a probabilistic generalization amenable to gradient-based generalizations of a maximum likelihood loss.
We provide benchmarks quantifying performance in high/low-dimensions, demonstrating that convergence rates depend only on the latent dimension of data within high-dimensional space.
arXiv Detail & Related papers (2021-07-07T08:02:00Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Learning to Beamform in Heterogeneous Massive MIMO Networks [48.62625893368218]
It is well-known problem of finding the optimal beamformers in massive multiple-input multiple-output (MIMO) networks.
We propose a novel deep learning based paper algorithm to address this problem.
arXiv Detail & Related papers (2020-11-08T12:48:06Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.