Demonstration of an Unusual Thermal Effect in the Casimir Force from
Graphene
- URL: http://arxiv.org/abs/2104.13598v2
- Date: Tue, 11 May 2021 11:36:26 GMT
- Title: Demonstration of an Unusual Thermal Effect in the Casimir Force from
Graphene
- Authors: M. Liu, Y. Zhang, G. L. Klimchitskaya, V. M. Mostepanenko, and U.
Mohideen
- Abstract summary: We report measurements of the gradient of the Casimir force between an Au-coated sphere and graphene sheet deposited on a silica plate.
The measurement data are compared with exact theory using the polarization tensor found in the framework of the Dirac model.
- Score: 0.440401067183266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We report precision measurements of the gradient of the Casimir force between
an Au-coated sphere and graphene sheet deposited on a silica plate. The
measurement data are compared with exact theory using the polarization tensor
found in the framework of the Dirac model including effects of the nonzero
chemical potential and energy gap of the graphene sample with no fitting
parameters. The very good agreement between experiment and theory demonstrates
the unusually big thermal effect at separations below 1 mum which has never
been observed for conventional 3D materials. Thus, it is confirmed
experimentally that for graphene the effective temperature is determined by the
Fermi velocity rather than by the speed of light.
Related papers
- Nonequilibrium Casimir-Polder Force between Nanoparticles and
Graphene-Coated Silica Plate: Combined Effect of the Chemical Potential and
Mass Gap [0.0]
The force between spherical nanoparticles and a graphene-coated silica plate is investigated in situations out of thermal equilibrium.
The effect is revealed that the combined impact of the chemical potential $mu$ and mass gap $Delta$ of graphene coating depends on the relationship between $Delta$ and 2$mu$.
arXiv Detail & Related papers (2024-03-09T18:54:50Z) - Impurities in graphene and their influence on the Casimir interaction [0.0]
impurities in graphene described by a scattering rate $Gamma$ on the Casimir interaction between graphene and an ideal conductor.
We compute the polarization tensor of quasiparticles in graphene and corresponding conductivities for TE and TM channels.
arXiv Detail & Related papers (2024-02-10T15:32:34Z) - Impact of Mass-Gap on the Dispersion Interaction of Nanoparticles with
Graphene out of Thermal Equilibrium [0.0]
We consider the nonequilibrium dispersion force acting on nanoparticles on the source side of gapped graphene sheet.
It is shown that, unlike the case of a pristine graphene, the nonequilibrium force preserves an attractive character.
arXiv Detail & Related papers (2023-07-06T14:17:38Z) - Thermal self-oscillations in monolayer graphene coupled to a
superconducting microwave cavity [58.720142291102135]
We observe thermal self-oscillations in a monolayer graphene flake coupled to superconducting resonator.
The experimental observations fit well with theoretical model based on thermal instability.
The modelling of the oscillation sidebands provides a method to evaluate electron phonon coupling in disordered graphene sample at low energies.
arXiv Detail & Related papers (2022-05-27T15:38:41Z) - The Casimir effect in graphene systems: Experiment and theory [0.0]
Two experiments on measuring the gradient of the Casimir force between an Au-coated sphere and graphene- coated substrates are described.
computational results for the Casimir pressure and for the thermal correction are presented.
Possible implications of this result to resolution of long-term problems of Casimir physics are discussed.
arXiv Detail & Related papers (2022-04-28T07:24:39Z) - Measurement of the Low-temperature Loss Tangent of High-resistivity
Silicon with a High Q-factor Superconducting Resonator [58.720142291102135]
We present the direct loss tangent measurement of a high-resist intrinsicivity (100) silicon wafer in the temperature range from 70 mK to 1 K.
The measurement was performed using a technique that takes advantage of a high quality factor superconducting niobium resonator.
arXiv Detail & Related papers (2021-08-19T20:13:07Z) - Experimental and theoretical investigation of the thermal effect in the
Casimir interaction from graphene [0.440401067183266]
We present the results of an experiment on measuring the gradient of the Casimir force between an Au-coated hollow glass microsphere and graphene-coated fused silica plate.
arXiv Detail & Related papers (2021-08-17T10:52:07Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Temperature insensitive type II quasi-phasematched spontaneous
parametric downconversion [62.997667081978825]
The temperature dependence of the refractive indices of potassium titanyl phosphate (KTP) are shown to enable quasi-phasematched type II spontaneous parametric downconversion.
We demonstrate the effect experimentally, observing temperature-insensitive degenerate emission at 1326nm, within the telecommunications O band.
This result has practical applications in the development of entangled photon sources for resource-constrained environments.
arXiv Detail & Related papers (2020-12-09T16:14:15Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z) - Thermoelectricity in Quantum-Hall Corbino Structures [48.7576911714538]
We measure the thermoelectric response of Corbino structures in the quantum Hall effect regime.
We predict a figure of merit for the efficiency of thermoelectric cooling which becomes very large for partially filled Landau levels.
arXiv Detail & Related papers (2020-03-03T19:19:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.