Can crowdsourcing rescue the social marketplace of ideas?
- URL: http://arxiv.org/abs/2104.13754v5
- Date: Mon, 19 Dec 2022 19:37:14 GMT
- Title: Can crowdsourcing rescue the social marketplace of ideas?
- Authors: Taha Yasseri and Filippo Menczer
- Abstract summary: Facebook and Twitter recently announced community-based review platforms to address misinformation.
We provide an overview of the potential affordances of such community-based approaches to content moderation based on past research and preliminary analysis of Twitter's Birdwatch data.
We call for multidisciplinary research utilizing methods from complex systems studies, behavioural sociology, and computational social science to advance the research on crowd-based content moderation.
- Score: 1.936291271591564
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Facebook and Twitter recently announced community-based review platforms to
address misinformation. We provide an overview of the potential affordances of
such community-based approaches to content moderation based on past research
and preliminary analysis of Twitter's Birdwatch data. While our analysis
generally supports a community-based approach to content moderation, it also
warns against potential pitfalls, particularly when the implementation of the
new infrastructure focuses on crowd-based "validation" rather than
"collaboration." We call for multidisciplinary research utilizing methods from
complex systems studies, behavioural sociology, and computational social
science to advance the research on crowd-based content moderation.
Related papers
- Community Shaping in the Digital Age: A Temporal Fusion Framework for Analyzing Discourse Fragmentation in Online Social Networks [45.58331196717468]
This research presents a framework for analyzing the dynamics of online communities in social media platforms.
By combining text classification and dynamic social network analysis, we uncover mechanisms driving community formation and evolution.
arXiv Detail & Related papers (2024-09-18T03:03:02Z) - SMP Challenge: An Overview and Analysis of Social Media Prediction Challenge [63.311045291016555]
Social Media Popularity Prediction (SMPP) is a crucial task that involves automatically predicting future popularity values of online posts.
This paper summarizes the challenging task, data, and research progress.
arXiv Detail & Related papers (2024-05-17T02:36:14Z) - Modeling Political Orientation of Social Media Posts: An Extended
Analysis [0.0]
Developing machine learning models to characterize political polarization on online social media presents significant challenges.
These challenges mainly stem from various factors such as the lack of annotated data, presence of noise in social media datasets, and the sheer volume of data.
We introduce two methods that leverage on news media bias and post content to label social media posts.
We demonstrate that current machine learning models can exhibit improved performance in predicting political orientation of social media posts.
arXiv Detail & Related papers (2023-11-21T03:34:20Z) - Having your Privacy Cake and Eating it Too: Platform-supported Auditing
of Social Media Algorithms for Public Interest [70.02478301291264]
Social media platforms curate access to information and opportunities, and so play a critical role in shaping public discourse.
Prior studies have used black-box methods to show that these algorithms can lead to biased or discriminatory outcomes.
We propose a new method for platform-supported auditing that can meet the goals of the proposed legislation.
arXiv Detail & Related papers (2022-07-18T17:32:35Z) - Yourfeed: Towards open science and interoperable systems for social
media [1.8623205938004257]
Existing social media platforms make it incredibly difficult for researchers to conduct studies on social media.
To close the gap, we introduce Yourfeed, a research tool for conducting ecologically valid social media research.
arXiv Detail & Related papers (2022-07-15T13:49:51Z) - SoK: Content Moderation in Social Media, from Guidelines to Enforcement,
and Research to Practice [9.356143195807064]
We study the 14 most popular social media content moderation guidelines and practices in the US.
We identify the differences between the content moderation employed in mainstream social media platforms compared to fringe platforms.
We highlight why platforms should shift from a one-size-fits-all model to a more inclusive model.
arXiv Detail & Related papers (2022-06-29T18:48:04Z) - Didn't see that coming: a survey on non-verbal social human behavior
forecasting [47.99589136455976]
Non-verbal social human behavior forecasting has increasingly attracted the interest of the research community in recent years.
Its direct applications to human-robot interaction and socially-aware human motion generation make it a very attractive field.
We define the behavior forecasting problem for multiple interactive agents in a generic way that aims at unifying the fields of social signals prediction and human motion forecasting.
arXiv Detail & Related papers (2022-03-04T18:25:30Z) - Personalized multi-faceted trust modeling to determine trust links in
social media and its potential for misinformation management [61.88858330222619]
We present an approach for predicting trust links between peers in social media.
We propose a data-driven multi-faceted trust modeling which incorporates many distinct features for a comprehensive analysis.
Illustrated in a trust-aware item recommendation task, we evaluate the proposed framework in the context of a large Yelp dataset.
arXiv Detail & Related papers (2021-11-11T19:40:51Z) - The Homophily Principle in Social Network Analysis [13.039459168820901]
Homophily is the tendency of like-minded people to interact with one another in social groups.
The study of homophily can provide eminent insights into the flow of information and behaviors within a society.
arXiv Detail & Related papers (2020-08-21T05:43:59Z) - An Iterative Approach for Identifying Complaint Based Tweets in Social
Media Platforms [76.9570531352697]
We propose an iterative methodology which aims to identify complaint based posts pertaining to the transport domain.
We perform comprehensive evaluations along with releasing a novel dataset for the research purposes.
arXiv Detail & Related papers (2020-01-24T22:23:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.