Multi-parameter Optimization for Ground-state Cooling of Mechanical Mode
using Quantum Dots
- URL: http://arxiv.org/abs/2104.14533v2
- Date: Mon, 18 Jul 2022 07:25:18 GMT
- Title: Multi-parameter Optimization for Ground-state Cooling of Mechanical Mode
using Quantum Dots
- Authors: Neelesh Kumar Vij, Meenakshi Khosla, and Shilpi Gupta
- Abstract summary: We propose a multi- parameter optimization scheme for ground-state cooling of a mechanical mode using quantum dots.
We implement the scheme on two major types of semiconductor quantum dot systems.
The proposed scheme can be readily extended to other driven systems coupled to a mechanical mode.
- Score: 0.9176056742068814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cooling a mechanical mode to its motional ground state opens up avenues for
both scientific and technological advancements in the field of quantum
meteorology and information processing. We propose a multi-parameter
optimization scheme for ground-state cooling of a mechanical mode using quantum
dots. Applying the master equation approach, we formulate the optimization
scheme over a broad range of system parameters including detunings, decay
rates, pumping rates, and coupling strengths. We implement the optimization
scheme on two major types of semiconductor quantum dot systems: colloidal and
epitaxial quantum dots. These systems span a broad range of mechanical mode
frequencies, coupling rates, and decay rates. Our optimization scheme lowers
the steady-state phonon number in all cases by several orders of magnitude. We
also calculate the net cooling rate by estimating the phonon decay rate and
show that the optimized system parameters also result in efficient cooling. The
proposed optimization scheme can be readily extended to other driven systems
coupled to a mechanical mode.
Related papers
- Compact Multi-Threshold Quantum Information Driven Ansatz For Strongly Interactive Lattice Spin Models [0.0]
We introduce a systematic procedure for ansatz building based on approximate Quantum Mutual Information (QMI)
Our approach generates a layered-structured ansatz, where each layer's qubit pairs are selected based on their QMI values, resulting in more efficient state preparation and optimization routines.
Our results show that the Multi-QIDA method reduces the computational complexity while maintaining high precision, making it a promising tool for quantum simulations in lattice spin models.
arXiv Detail & Related papers (2024-08-05T17:07:08Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
We propose a new methodology to design quantum hybrid diffusion models.
We propose two possible hybridization schemes combining quantum computing's superior generalization with classical networks' modularity.
arXiv Detail & Related papers (2024-02-25T16:57:51Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Efficient High-Fidelity Flying Qubit Shaping [0.0]
We formulate a theory for stimulated Raman emission which is applicable to a wide range of physical systems.
We find the upper bound for the photonic pulse emission efficiency of arbitrary matter qubit states for imperfect emitters.
Protocols for the production of time-bin encoding and spin-photon entanglement are proposed.
arXiv Detail & Related papers (2022-12-21T17:19:39Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - On optimization of coherent and incoherent controls for two-level
quantum systems [77.34726150561087]
This article considers some control problems for closed and open two-level quantum systems.
The closed system's dynamics is governed by the Schr"odinger equation with coherent control.
The open system's dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad master equation.
arXiv Detail & Related papers (2022-05-05T09:08:03Z) - Numerical Gate Synthesis for Quantum Heuristics on Bosonic Quantum
Processors [1.195496689595016]
We study the framework in the context of qudits which are controllable electromagnetic modes of a superconducting cavity system.
We showcase control of single-qudit operations up to eight states, and two-qutrit operations, mapped respectively onto a single mode and two modes of the resonator.
arXiv Detail & Related papers (2022-01-19T18:55:13Z) - Efficient exploration of Hamiltonian parameter space for optimal control
of non-Markovian open quantum systems [0.0]
We present a general method to efficiently design optimal control sequences for non-Markovian open quantum systems.
We illustrate it by optimizing the shape of a laser pulse to prepare a quantum dot in a specific state.
arXiv Detail & Related papers (2021-01-08T16:02:31Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Optimal non-classical correlations of light with a levitated nano-sphere [34.82692226532414]
Nonclassical correlations provide a resource for many applications in quantum technology.
Optomechanical systems can generate nonclassical correlations between the mechanical mode and a mode of travelling light.
We propose automated optimization of the production of quantum correlations in such a system.
arXiv Detail & Related papers (2020-06-26T15:27:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.