CoCon: Cooperative-Contrastive Learning
- URL: http://arxiv.org/abs/2104.14764v1
- Date: Fri, 30 Apr 2021 05:46:02 GMT
- Title: CoCon: Cooperative-Contrastive Learning
- Authors: Nishant Rai, Ehsan Adeli, Kuan-Hui Lee, Adrien Gaidon, Juan Carlos
Niebles
- Abstract summary: Self-supervised visual representation learning is key for efficient video analysis.
Recent success in learning image representations suggests contrastive learning is a promising framework to tackle this challenge.
We introduce a cooperative variant of contrastive learning to utilize complementary information across views.
- Score: 52.342936645996765
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Labeling videos at scale is impractical. Consequently, self-supervised visual
representation learning is key for efficient video analysis. Recent success in
learning image representations suggests contrastive learning is a promising
framework to tackle this challenge. However, when applied to real-world videos,
contrastive learning may unknowingly lead to the separation of instances that
contain semantically similar events. In our work, we introduce a cooperative
variant of contrastive learning to utilize complementary information across
views and address this issue. We use data-driven sampling to leverage implicit
relationships between multiple input video views, whether observed (e.g. RGB)
or inferred (e.g. flow, segmentation masks, poses). We are one of the firsts to
explore exploiting inter-instance relationships to drive learning. We
experimentally evaluate our representations on the downstream task of action
recognition. Our method achieves competitive performance on standard benchmarks
(UCF101, HMDB51, Kinetics400). Furthermore, qualitative experiments illustrate
that our models can capture higher-order class relationships.
Related papers
- Learning from Untrimmed Videos: Self-Supervised Video Representation
Learning with Hierarchical Consistency [60.756222188023635]
We propose to learn representations by leveraging more abundant information in unsupervised videos.
HiCo can generate stronger representations on untrimmed videos, it also improves the representation quality when applied to trimmed videos.
arXiv Detail & Related papers (2022-04-06T18:04:54Z) - Semi-TCL: Semi-Supervised Track Contrastive Representation Learning [40.31083437957288]
We design a new instance-to-track matching objective to learn appearance embedding.
It compares a candidate detection to the embedding of the tracks persisted in the tracker.
We implement this learning objective in a unified form following the spirit of constrastive loss.
arXiv Detail & Related papers (2021-07-06T05:23:30Z) - ASCNet: Self-supervised Video Representation Learning with
Appearance-Speed Consistency [62.38914747727636]
We study self-supervised video representation learning, which is a challenging task due to 1) a lack of labels for explicit supervision and 2) unstructured and noisy visual information.
Existing methods mainly use contrastive loss with video clips as the instances and learn visual representation by discriminating instances from each other.
In this paper, we observe that the consistency between positive samples is the key to learn robust video representations.
arXiv Detail & Related papers (2021-06-04T08:44:50Z) - Contrastive Learning of Image Representations with Cross-Video
Cycle-Consistency [13.19476138523546]
Cross-video relation has barely been explored for visual representation learning.
We propose a novel contrastive learning method which explores the cross-video relation by using cycle-consistency for general image representation learning.
We show significant improvement over state-of-the-art contrastive learning methods.
arXiv Detail & Related papers (2021-05-13T17:59:11Z) - Composable Augmentation Encoding for Video Representation Learning [94.2358972764708]
We focus on contrastive methods for self-supervised video representation learning.
A common paradigm in contrastive learning is to construct positive pairs by sampling different data views for the same instance, with different data instances as negatives.
We propose an 'augmentation aware' contrastive learning framework, where we explicitly provide a sequence of augmentation parameterisations.
We show that our method encodes valuable information about specified spatial or temporal augmentation, and in doing so also achieve state-of-the-art performance on a number of video benchmarks.
arXiv Detail & Related papers (2021-04-01T16:48:53Z) - Contrastive Transformation for Self-supervised Correspondence Learning [120.62547360463923]
We study the self-supervised learning of visual correspondence using unlabeled videos in the wild.
Our method simultaneously considers intra- and inter-video representation associations for reliable correspondence estimation.
Our framework outperforms the recent self-supervised correspondence methods on a range of visual tasks.
arXiv Detail & Related papers (2020-12-09T14:05:06Z) - Memory-augmented Dense Predictive Coding for Video Representation
Learning [103.69904379356413]
We propose a new architecture and learning framework Memory-augmented Predictive Coding (MemDPC) for the task.
We investigate visual-only self-supervised video representation learning from RGB frames, or from unsupervised optical flow, or both.
In all cases, we demonstrate state-of-the-art or comparable performance over other approaches with orders of magnitude fewer training data.
arXiv Detail & Related papers (2020-08-03T17:57:01Z) - Learning Spatiotemporal Features via Video and Text Pair Discrimination [30.64670449131973]
Cross-modal pair (CPD) framework captures correlation between video and its associated text.
We train our CPD models on both standard video dataset (Kinetics-210k) and uncurated web video dataset (-300k) to demonstrate its effectiveness.
arXiv Detail & Related papers (2020-01-16T08:28:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.