Continuous normalizing flows on manifolds
- URL: http://arxiv.org/abs/2104.14959v1
- Date: Sun, 14 Mar 2021 15:35:19 GMT
- Title: Continuous normalizing flows on manifolds
- Authors: Luca Falorsi
- Abstract summary: We describe how the recently introduced Neural ODEs and continuous normalizing flows can be extended to arbitrary smooth manifold.
We propose a general methodology for parameterizing vector fields on these spaces and demonstrate how gradient-based learning can be performed.
- Score: 0.342658286826597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Normalizing flows are a powerful technique for obtaining reparameterizable
samples from complex multimodal distributions. Unfortunately, current
approaches are only available for the most basic geometries and fall short when
the underlying space has a nontrivial topology, limiting their applicability
for most real-world data. Using fundamental ideas from differential geometry
and geometric control theory, we describe how the recently introduced Neural
ODEs and continuous normalizing flows can be extended to arbitrary smooth
manifolds. We propose a general methodology for parameterizing vector fields on
these spaces and demonstrate how gradient-based learning can be performed.
Additionally, we provide a scalable unbiased estimator for the divergence in
this generalized setting. Experiments on a diverse selection of spaces
empirically showcase the defined framework's ability to obtain
reparameterizable samples from complex distributions.
Related papers
- Topological Obstructions and How to Avoid Them [22.45861345237023]
We show that local optima can arise due to singularities or an incorrect degree or winding number.
We propose a new flow-based model that maps data points to multimodal distributions over geometric spaces.
arXiv Detail & Related papers (2023-12-12T18:56:14Z) - Scaling Riemannian Diffusion Models [68.52820280448991]
We show that our method enables us to scale to high dimensional tasks on nontrivial manifold.
We model QCD densities on $SU(n)$ lattices and contrastively learned embeddings on high dimensional hyperspheres.
arXiv Detail & Related papers (2023-10-30T21:27:53Z) - Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes [57.396578974401734]
We introduce a principled framework for building a generative diffusion process on general manifold.
Instead of following the denoising approach of previous diffusion models, we construct a diffusion process using a mixture of bridge processes.
We develop a geometric understanding of the mixture process, deriving the drift as a weighted mean of tangent directions to the data points.
arXiv Detail & Related papers (2023-10-11T06:04:40Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - Normalizing flows for lattice gauge theory in arbitrary space-time
dimension [135.04925500053622]
Applications of normalizing flows to the sampling of field configurations in lattice gauge theory have so far been explored almost exclusively in two space-time dimensions.
We discuss masked autoregressive with tractable and unbiased Jacobian determinants, a key ingredient for scalable and exact flow-based sampling algorithms.
For concreteness, results from a proof-of-principle application to SU(3) gauge theory in four space-time dimensions are reported.
arXiv Detail & Related papers (2023-05-03T19:54:04Z) - Flow Matching on General Geometries [43.252817099263744]
We propose a simple yet powerful framework for training continuous normalizing flows on manifold geometries.
We show that it is simulation-free on simple geometries, does not require divergence, and computes its target vector field in closed-form.
Our method achieves state-of-the-art performance on many real-world non-Euclidean datasets.
arXiv Detail & Related papers (2023-02-07T18:21:24Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Resampling Base Distributions of Normalizing Flows [0.0]
We introduce a base distribution for normalizing flows based on learned rejection sampling.
We develop suitable learning algorithms using both maximizing the log-likelihood and the optimization of the reverse Kullback-Leibler divergence.
arXiv Detail & Related papers (2021-10-29T14:44:44Z) - A Unifying and Canonical Description of Measure-Preserving Diffusions [60.59592461429012]
A complete recipe of measure-preserving diffusions in Euclidean space was recently derived unifying several MCMC algorithms into a single framework.
We develop a geometric theory that improves and generalises this construction to any manifold.
arXiv Detail & Related papers (2021-05-06T17:36:55Z) - Neural Manifold Ordinary Differential Equations [46.25832801867149]
We introduce Neural Manifold Ordinary Differential Equations, which enables the construction of Manifold Continuous Normalizing Flows (MCNFs)
MCNFs require only local geometry and compute probabilities with continuous change of variables.
We find that leveraging continuous manifold dynamics produces a marked improvement for both density estimation and downstream tasks.
arXiv Detail & Related papers (2020-06-18T03:24:58Z) - Neural Ordinary Differential Equations on Manifolds [0.342658286826597]
Recently normalizing flows in Euclidean space based on Neural ODEs show great promise, yet suffer the same limitations.
We show how vector fields provide a general framework for parameterizing a flexible class of invertible mapping on these spaces.
arXiv Detail & Related papers (2020-06-11T17:56:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.