Mixing Time Guarantees for Unadjusted Hamiltonian Monte Carlo
- URL: http://arxiv.org/abs/2105.00887v1
- Date: Mon, 3 May 2021 14:13:47 GMT
- Title: Mixing Time Guarantees for Unadjusted Hamiltonian Monte Carlo
- Authors: Nawaf Bou-Rabee and Andreas Eberle
- Abstract summary: We provide quantitative upper bounds on the total variation mixing time of the Markov chain corresponding to the unadjusted Hamiltonian Monte Carlo (uHMC) algorithm.
For two general classes of models and fixed time discretization step size $h$, the mixing time is shown to depend only logarithmically on the dimension.
We show that an $varepsilon$-accurate approximation of the target distribution $mu$ in total variation distance can be achieved by uHMC.
- Score: 1.14219428942199
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We provide quantitative upper bounds on the total variation mixing time of
the Markov chain corresponding to the unadjusted Hamiltonian Monte Carlo (uHMC)
algorithm. For two general classes of models and fixed time discretization step
size $h$, the mixing time is shown to depend only logarithmically on the
dimension. Moreover, we provide quantitative upper bounds on the total
variation distance between the invariant measure of the uHMC chain and the true
target measure. As a consequence, we show that an $\varepsilon$-accurate
approximation of the target distribution $\mu$ in total variation distance can
be achieved by uHMC for a broad class of models with
$O\left(d^{3/4}\varepsilon^{-1/2}\log (d/\varepsilon )\right)$ gradient
evaluations, and for mean field models with weak interactions with
$O\left(d^{1/2}\varepsilon^{-1/2}\log (d/\varepsilon )\right)$ gradient
evaluations. The proofs are based on the construction of successful couplings
for uHMC that realize the upper bounds.
Related papers
- Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
We consider the problem of learning an $varepsilon$-optimal policy in a general class of continuous-space Markov decision processes (MDPs) having smooth Bellman operators.
Key to our solution is a novel projection technique based on ideas from harmonic analysis.
Our result bridges the gap between two popular but conflicting perspectives on continuous-space MDPs.
arXiv Detail & Related papers (2024-05-10T09:58:47Z) - Symmetric Mean-field Langevin Dynamics for Distributional Minimax
Problems [78.96969465641024]
We extend mean-field Langevin dynamics to minimax optimization over probability distributions for the first time with symmetric and provably convergent updates.
We also study time and particle discretization regimes and prove a new uniform-in-time propagation of chaos result.
arXiv Detail & Related papers (2023-12-02T13:01:29Z) - When does Metropolized Hamiltonian Monte Carlo provably outperform
Metropolis-adjusted Langevin algorithm? [4.657614491309671]
We analyze the mixing time of Metropolized Hamiltonian Monte Carlo (HMC) with the leapfrog integrator.
We show that the joint distribution of the location and velocity variables of the discretization of the continuous HMC dynamics stays approximately invariant.
arXiv Detail & Related papers (2023-04-10T17:35:57Z) - Hamiltonian Monte Carlo for efficient Gaussian sampling: long and random
steps [0.0]
Hamiltonian Monte Carlo (HMC) is a Markov chain algorithm for sampling from a high-dimensional distribution with density $e-f(x)$.
We show that HMC can sample from a distribution that is $varepsilon$-close in total variation distance using $widetildeO(sqrtkappa d1/4 log(1/varepsilon)$ gradient queries.
arXiv Detail & Related papers (2022-09-26T15:29:29Z) - Mean-Square Analysis with An Application to Optimal Dimension Dependence
of Langevin Monte Carlo [60.785586069299356]
This work provides a general framework for the non-asymotic analysis of sampling error in 2-Wasserstein distance.
Our theoretical analysis is further validated by numerical experiments.
arXiv Detail & Related papers (2021-09-08T18:00:05Z) - A New Framework for Variance-Reduced Hamiltonian Monte Carlo [88.84622104944503]
We propose a new framework of variance-reduced Hamiltonian Monte Carlo (HMC) methods for sampling from an $L$-smooth and $m$-strongly log-concave distribution.
We show that the unbiased gradient estimators, including SAGA and SVRG, based HMC methods achieve highest gradient efficiency with small batch size.
Experimental results on both synthetic and real-world benchmark data show that our new framework significantly outperforms the full gradient and gradient HMC approaches.
arXiv Detail & Related papers (2021-02-09T02:44:24Z) - Faster Convergence of Stochastic Gradient Langevin Dynamics for
Non-Log-Concave Sampling [110.88857917726276]
We provide a new convergence analysis of gradient Langevin dynamics (SGLD) for sampling from a class of distributions that can be non-log-concave.
At the core of our approach is a novel conductance analysis of SGLD using an auxiliary time-reversible Markov Chain.
arXiv Detail & Related papers (2020-10-19T15:23:18Z) - Convergence of Langevin Monte Carlo in Chi-Squared and Renyi Divergence [8.873449722727026]
We show that the rate estimate $widetildemathcalO(depsilon-1)$ improves the previously known rates in both of these metrics.
In particular, for convex and firstorder smooth potentials, we show that LMC algorithm achieves the rate estimate $widetildemathcalO(depsilon-1)$ which improves the previously known rates in both of these metrics.
arXiv Detail & Related papers (2020-07-22T18:18:28Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
Asynchronous Q-learning aims to learn the optimal action-value function (or Q-function) of a Markov decision process (MDP)
We show that the number of samples needed to yield an entrywise $varepsilon$-accurate estimate of the Q-function is at most on the order of $frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$ up to some logarithmic factor.
arXiv Detail & Related papers (2020-06-04T17:51:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.