Impact of Gender Debiased Word Embeddings in Language Modeling
- URL: http://arxiv.org/abs/2105.00908v3
- Date: Wed, 5 May 2021 09:43:34 GMT
- Title: Impact of Gender Debiased Word Embeddings in Language Modeling
- Authors: Christine Basta and Marta R. Costa-juss\`a
- Abstract summary: Gender, race and social biases have been detected as evident examples of unfairness in applications of Natural Language Processing.
Recent studies have shown that the human-generated data used in training is an apparent factor of getting biases.
Current algorithms have also been proven to amplify biases from data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Gender, race and social biases have recently been detected as evident
examples of unfairness in applications of Natural Language Processing. A key
path towards fairness is to understand, analyse and interpret our data and
algorithms. Recent studies have shown that the human-generated data used in
training is an apparent factor of getting biases. In addition, current
algorithms have also been proven to amplify biases from data.
To further address these concerns, in this paper, we study how an
state-of-the-art recurrent neural language model behaves when trained on data,
which under-represents females, using pre-trained standard and debiased word
embeddings. Results show that language models inherit higher bias when trained
on unbalanced data when using pre-trained embeddings, in comparison with using
embeddings trained within the task. Moreover, results show that, on the same
data, language models inherit lower bias when using debiased pre-trained
emdeddings, compared to using standard pre-trained embeddings.
Related papers
- Evaluating Bias and Fairness in Gender-Neutral Pretrained
Vision-and-Language Models [23.65626682262062]
We quantify bias amplification in pretraining and after fine-tuning on three families of vision-and-language models.
Overall, we find that bias amplification in pretraining and after fine-tuning are independent.
arXiv Detail & Related papers (2023-10-26T16:19:19Z) - The Impact of Debiasing on the Performance of Language Models in
Downstream Tasks is Underestimated [70.23064111640132]
We compare the impact of debiasing on performance across multiple downstream tasks using a wide-range of benchmark datasets.
Experiments show that the effects of debiasing are consistently emphunderestimated across all tasks.
arXiv Detail & Related papers (2023-09-16T20:25:34Z) - Language Models Get a Gender Makeover: Mitigating Gender Bias with
Few-Shot Data Interventions [50.67412723291881]
Societal biases present in pre-trained large language models are a critical issue.
We propose data intervention strategies as a powerful yet simple technique to reduce gender bias in pre-trained models.
arXiv Detail & Related papers (2023-06-07T16:50:03Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
We propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases.
A user can detect the presence of bias against a group by identifying unfair causal relationships in the causal network.
For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset.
arXiv Detail & Related papers (2022-08-10T03:41:48Z) - The Birth of Bias: A case study on the evolution of gender bias in an
English language model [1.6344851071810076]
We use a relatively small language model, using the LSTM architecture trained on an English Wikipedia corpus.
We find that the representation of gender is dynamic and identify different phases during training.
We show that gender information is represented increasingly locally in the input embeddings of the model.
arXiv Detail & Related papers (2022-07-21T00:59:04Z) - Towards an Enhanced Understanding of Bias in Pre-trained Neural Language
Models: A Survey with Special Emphasis on Affective Bias [2.6304695993930594]
We present a survey to comprehend bias in large pre-trained language models, analyze the stages at which they occur, and various ways in which these biases could be quantified and mitigated.
Considering wide applicability of textual affective computing based downstream tasks in real-world systems such as business, healthcare, education, etc., we give a special emphasis on investigating bias in the context of affect (emotion) i.e., Affective Bias.
We present a summary of various bias evaluation corpora that help to aid future research and discuss challenges in the research on bias in pre-trained language models.
arXiv Detail & Related papers (2022-04-21T18:51:19Z) - Improving Gender Fairness of Pre-Trained Language Models without
Catastrophic Forgetting [88.83117372793737]
Forgetting information in the original training data may damage the model's downstream performance by a large margin.
We propose GEnder Equality Prompt (GEEP) to improve gender fairness of pre-trained models with less forgetting.
arXiv Detail & Related papers (2021-10-11T15:52:16Z) - Balancing out Bias: Achieving Fairness Through Training Reweighting [58.201275105195485]
Bias in natural language processing arises from models learning characteristics of the author such as gender and race.
Existing methods for mitigating and measuring bias do not directly account for correlations between author demographics and linguistic variables.
This paper introduces a very simple but highly effective method for countering bias using instance reweighting.
arXiv Detail & Related papers (2021-09-16T23:40:28Z) - Learning from Failure: Training Debiased Classifier from Biased
Classifier [76.52804102765931]
We show that neural networks learn to rely on spurious correlation only when it is "easier" to learn than the desired knowledge.
We propose a failure-based debiasing scheme by training a pair of neural networks simultaneously.
Our method significantly improves the training of the network against various types of biases in both synthetic and real-world datasets.
arXiv Detail & Related papers (2020-07-06T07:20:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.