Information analysis in free and confined harmonic oscillator
- URL: http://arxiv.org/abs/2105.01470v1
- Date: Tue, 4 May 2021 13:01:03 GMT
- Title: Information analysis in free and confined harmonic oscillator
- Authors: Neetik Mukherjee and Amlan K. Roy
- Abstract summary: In the last decade, information measures were investigated extensively in diverse quantum problems.
The most prominent amongst these are: Fisher information, Shannon entropy, Renyi entropy, Tsallis entropy, Onicescu energy and several complexities.
These have been invoked to explain several physico-chemical properties of a system under investigation.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In this chapter we shall discuss the recent progresses of information
theoretic tools in the context of free and confined harmonic oscillator.
Confined quantum systems have provided appreciable interest in areas of
physics, chemistry, biology,etc., since its inception. A particle under extreme
pressure environment unfolds many fascinating, notable physical and chemical
changes. The desired effect is achieved by reducing the spatial boundary from
infinity to a finite region. Similarly, in the last decade, information
measures were investigated extensively in diverse quantum problems, in both
free and constrained situations. The most prominent amongst these are: Fisher
information, Shannon entropy, Renyi entropy , Tsallis entropy, Onicescu energy
and several complexities. Arguably, these are the most effective measures of
uncertainty, as they do not make any reference to some specific points of a
respective Hilbert space. These have been invoked to explain several
physico-chemical properties of a system under investigation. Kullback-Leibler
divergence or relative entropy describes how a given probability distribution
shifts from a reference distribution function. This characterizes a measure of
discrimination between two states. In other words, it extracts the change of
information in going from one state to another.
Related papers
- Effects of external field and potential on non-relativistic quantum particles in disclinations background [0.0]
In this work, we investigate the behavior of non-relativistic quantum particles immersed in a cosmic string space-time background.
We employ analytical methods to solve the associated wave equation, leading to the derivation of eigenvalue solutions for this quantum system.
In an extension of our investigation, we explore the thermodynamic and magnetic properties of the quantum system when it is exposed to non-zero temperature conditions.
arXiv Detail & Related papers (2024-05-26T05:42:49Z) - Observation of Hilbert-space fragmentation and fractonic excitations in two-dimensional Hubbard systems [0.0]
We experimentally observe Hilbert space fragmentation (HSF) in a two-dimensional tilted Bose-Hubbard model.
We find uniform initial states with equal particle number and energy differ strikingly in their relaxation dynamics.
Our results mark the first observation of HSF beyond one dimension, as well as the concomitant direct observation of fractons.
arXiv Detail & Related papers (2024-04-23T10:22:40Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Experimental verification of the area law of mutual information in
quantum field theory [0.0]
We experimentally verify one of the fundamental properties of equilibrium states of gapped quantum many-body systems.
We also study the dependence of mutual information on temperature and the separation between the subsystems.
Our work demonstrates the capability of ultra-cold atom simulators to measure entanglement in quantum field theories.
arXiv Detail & Related papers (2022-06-21T17:41:01Z) - Breakdown of quantum-classical correspondence and dynamical generation
of entanglement [6.167267225728292]
We study the generation of quantum entanglement induced by an ideal Fermi gas confined in a chaotic cavity.
We find that the breakdown of the quantum-classical correspondence of particle motion, via dramatically changing the spatial structure of many-body wavefunction, leads to profound changes of the entanglement structure.
arXiv Detail & Related papers (2021-04-14T03:09:24Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Contributions from populations and coherences in non-equilibrium entropy
production [0.0]
entropy produced when a quantum system is driven away from equilibrium can be decomposed in two parts, one related with populations and the other with quantum coherences.
We argue that, despite satisfying fluctuation theorems and having a clear resource-theoretic interpretation, this splitting has shortcomings.
Motivated by this, we provide here a complementary approach, where the entropy production is split in a way such that the contributions from populations and coherences are written in terms of a thermal state of a specially dephased Hamiltonian.
arXiv Detail & Related papers (2021-02-22T18:30:05Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.