Quantum cryptography in the aspect of popularization of science and
development of professional and technical qualifications
- URL: http://arxiv.org/abs/2105.01534v1
- Date: Thu, 29 Apr 2021 17:06:22 GMT
- Title: Quantum cryptography in the aspect of popularization of science and
development of professional and technical qualifications
- Authors: L.I. Stefanenko, A.G. Sergeev, Y.V. Kurochkin, V.E. Rodimin
- Abstract summary: The article provides an example of such an explanation for the BB84 quantum key distribution protocol based on phase coding.
This allows you to seamlessly get acquainted with the real cryptographic installation QRate, used at the WorldSkills competition in the competence of "Quantum Technologies"
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The aura of mystery surrounding quantum physics makes it difficult to advance
quantum technologies. Demystification requires methodological techniques that
explain the basics of quantum technologies without metaphors and abstract
mathematics. The article provides an example of such an explanation for the
BB84 quantum key distribution protocol based on phase coding. This allows you
to seamlessly get acquainted with the real cryptographic installation QRate,
used at the WorldSkills competition in the competence of "Quantum
Technologies".
Related papers
- Hybrid quantum transfer learning for crack image classification on NISQ
hardware [62.997667081978825]
We present an application of quantum transfer learning for detecting cracks in gray value images.
We compare the performance and training time of PennyLane's standard qubits with IBM's qasm_simulator and real backends.
arXiv Detail & Related papers (2023-07-31T14:45:29Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Quantum Cryptography: Quantum Key Distribution, a Non-technical Approach [0.0]
Quantum mechanics provides means to create an inherently secure communication channel that is protected by the laws of physics.
This paper is a non-technical overview of quantum key distribution, a type of cryptography poised to exploit the laws of quantum mechanics directly.
arXiv Detail & Related papers (2022-11-09T15:30:23Z) - Unclonability and Quantum Cryptanalysis: From Foundations to
Applications [0.0]
Unclonability is a fundamental concept in quantum theory and one of the main non-classical properties of quantum information.
We introduce new notions of unclonability in the quantum world, namely quantum physical unclonability.
We discuss several applications of this new type of unclonability as a cryptographic resource for designing provably secure quantum protocols.
arXiv Detail & Related papers (2022-10-31T17:57:09Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Shadow process tomography of quantum channels [0.6554326244334866]
Quantum process tomography is a critical capability for building quantum computers, enabling quantum networks, and understanding quantum sensors.
The recent field of shadow tomography, applied to quantum states, has demonstrated the ability to extract key information about a state with onlyly many measurements.
We make use of Choi isomorphism to directly apply rigorous bounds from shadow state tomography to shadow process tomography, and we find additional bounds on the number of measurements that are unique to process tomography.
arXiv Detail & Related papers (2021-10-07T17:16:41Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Quantum Candies and Quantum Cryptography [0.0]
We investigate, extend, and much expand here "quantum candies" (invented by Jacobs), a pedagogical model for intuitively describing some basic concepts in quantum information.
We explicitly demonstrate various additional quantum cryptography protocols using quantum candies in an approachable manner.
arXiv Detail & Related papers (2020-11-03T21:01:08Z) - Quantum entanglement recognition [0.0]
We formulate a framework for probing entanglement based on machine learning techniques.
We show that the resulting quantum entanglement recognition task is accurate and can be assigned a well-controlled error.
arXiv Detail & Related papers (2020-07-28T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.