Deep Neural Networks Based Weight Approximation and Computation Reuse
for 2-D Image Classification
- URL: http://arxiv.org/abs/2105.02954v1
- Date: Wed, 28 Apr 2021 10:16:53 GMT
- Title: Deep Neural Networks Based Weight Approximation and Computation Reuse
for 2-D Image Classification
- Authors: Mohammed F. Tolba, Huruy Tekle Tesfai, Hani Saleh, Baker Mohammad, and
Mahmoud Al-Qutayri
- Abstract summary: Deep Neural Networks (DNNs) are computationally and memory intensive.
This paper introduces a new method to improve DNNs performance by fusing approximate computing with data reuse techniques.
It is suitable for IoT edge devices as it reduces the memory size requirement as well as the number of needed memory accesses.
- Score: 0.9507070656654631
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks (DNNs) are computationally and memory intensive, which
makes their hardware implementation a challenging task especially for resource
constrained devices such as IoT nodes. To address this challenge, this paper
introduces a new method to improve DNNs performance by fusing approximate
computing with data reuse techniques to be used for image recognition
applications. DNNs weights are approximated based on the linear and quadratic
approximation methods during the training phase, then, all of the weights are
replaced with the linear/quadratic coefficients to execute the inference in a
way where different weights could be computed using the same coefficients. This
leads to a repetition of the weights across the processing element (PE) array,
which in turn enables the reuse of the DNN sub-computations (computational
reuse) and leverage the same data (data reuse) to reduce DNNs computations,
memory accesses, and improve energy efficiency albeit at the cost of increased
training time. Complete analysis for both MNIST and CIFAR 10 datasets is
presented for image recognition , where LeNet 5 revealed a reduction in the
number of parameters by a factor of 1211.3x with a drop of less than 0.9% in
accuracy. When compared to the state of the art Row Stationary (RS) method, the
proposed architecture saved 54% of the total number of adders and multipliers
needed. Overall, the proposed approach is suitable for IoT edge devices as it
reduces the memory size requirement as well as the number of needed memory
accesses.
Related papers
- Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
We propose a novel algorithm that uses a random feature approximation (RFA) of the Neural Network Gaussian Process (NNGP) kernel.
Our algorithm provides at least a 100-fold speedup over KIP and can run on a single GPU.
Our new method, termed an RFA Distillation (RFAD), performs competitively with KIP and other dataset condensation algorithms in accuracy over a range of large-scale datasets.
arXiv Detail & Related papers (2022-10-21T15:56:13Z) - A Low-Complexity Approach to Rate-Distortion Optimized Variable Bit-Rate
Compression for Split DNN Computing [5.3221129103999125]
Split computing has emerged as a recent paradigm for implementation of DNN-based AI workloads.
We present an approach that addresses the challenge of optimizing the rate-accuracy-complexity trade-off.
Our approach is remarkably lightweight, both during training and inference, highly effective and achieves excellent rate-distortion performance.
arXiv Detail & Related papers (2022-08-24T15:02:11Z) - Efficient and Robust Mixed-Integer Optimization Methods for Training
Binarized Deep Neural Networks [0.07614628596146598]
We study deep neural networks with binary activation functions and continuous or integer weights (BDNN)
We show that the BDNN can be reformulated as a mixed-integer linear program with bounded weight space which can be solved to global optimality by classical mixed-integer programming solvers.
For the first time a robust model is presented which enforces robustness of the BDNN during training.
arXiv Detail & Related papers (2021-10-21T18:02:58Z) - Spike time displacement based error backpropagation in convolutional
spiking neural networks [0.6193838300896449]
In this paper, we extend the STiDi-BP algorithm to employ it in deeper and convolutional architectures.
The evaluation results on the image classification task based on two popular benchmarks, MNIST and Fashion-MNIST, confirm that this algorithm has been applicable in deep SNNs.
We consider a convolutional SNN with two sets of weights: real-valued weights that are updated in the backward pass and their signs, binary weights, that are employed in the feedforward process.
arXiv Detail & Related papers (2021-08-31T05:18:59Z) - Low-Precision Training in Logarithmic Number System using Multiplicative
Weight Update [49.948082497688404]
Training large-scale deep neural networks (DNNs) currently requires a significant amount of energy, leading to serious environmental impacts.
One promising approach to reduce the energy costs is representing DNNs with low-precision numbers.
We jointly design a lowprecision training framework involving a logarithmic number system (LNS) and a multiplicative weight update training method, termed LNS-Madam.
arXiv Detail & Related papers (2021-06-26T00:32:17Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
We propose a novel encoding scheme using -1, +1 to decompose quantized neural networks (QNNs) into multi-branch binary networks.
We validate the effectiveness of our method on large-scale image classification, object detection, and semantic segmentation tasks.
arXiv Detail & Related papers (2021-06-18T03:11:15Z) - Partitioning sparse deep neural networks for scalable training and
inference [8.282177703075453]
State-of-the-art deep neural networks (DNNs) have significant computational and data management requirements.
Sparsification and pruning methods are shown to be effective in removing a large fraction of connections in DNNs.
The resulting sparse networks present unique challenges to further improve the computational efficiency of training and inference in deep learning.
arXiv Detail & Related papers (2021-04-23T20:05:52Z) - A Fully Tensorized Recurrent Neural Network [48.50376453324581]
We introduce a "fully tensorized" RNN architecture which jointly encodes the separate weight matrices within each recurrent cell.
This approach reduces model size by several orders of magnitude, while still maintaining similar or better performance compared to standard RNNs.
arXiv Detail & Related papers (2020-10-08T18:24:12Z) - Learning Sparse & Ternary Neural Networks with Entropy-Constrained
Trained Ternarization (EC2T) [17.13246260883765]
Deep neural networks (DNNs) have shown remarkable success in a variety of machine learning applications.
In recent years, there is an increasing interest in deploying DNNs to resource-constrained devices with limited energy, memory, and computational budget.
We propose Entropy-Constrained Trained Ternarization (EC2T), a general framework to create sparse and ternary neural networks.
arXiv Detail & Related papers (2020-04-02T15:38:00Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
Training deep neural networks on large-scale datasets requires significant hardware resources.
Backpropagation, the workhorse for training these networks, is an inherently sequential process that is difficult to parallelize.
We propose a neuro-biologically-plausible alternative to backprop that can be used to train deep networks.
arXiv Detail & Related papers (2020-02-10T16:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.