A Dataset of Information-Seeking Questions and Answers Anchored in
Research Papers
- URL: http://arxiv.org/abs/2105.03011v1
- Date: Fri, 7 May 2021 00:12:34 GMT
- Title: A Dataset of Information-Seeking Questions and Answers Anchored in
Research Papers
- Authors: Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A. Smith, Matt
Gardner
- Abstract summary: We present a dataset of 5,049 questions over 1,585 Natural Language Processing papers.
Each question is written by an NLP practitioner who read only the title and abstract of the corresponding paper, and the question seeks information present in the full text.
We find that existing models that do well on other QA tasks do not perform well on answering these questions, underperforming humans by at least 27 F1 points when answering them from entire papers.
- Score: 66.11048565324468
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Readers of academic research papers often read with the goal of answering
specific questions. Question Answering systems that can answer those questions
can make consumption of the content much more efficient. However, building such
tools requires data that reflect the difficulty of the task arising from
complex reasoning about claims made in multiple parts of a paper. In contrast,
existing information-seeking question answering datasets usually contain
questions about generic factoid-type information. We therefore present QASPER,
a dataset of 5,049 questions over 1,585 Natural Language Processing papers.
Each question is written by an NLP practitioner who read only the title and
abstract of the corresponding paper, and the question seeks information present
in the full text. The questions are then answered by a separate set of NLP
practitioners who also provide supporting evidence to answers. We find that
existing models that do well on other QA tasks do not perform well on answering
these questions, underperforming humans by at least 27 F1 points when answering
them from entire papers, motivating further research in document-grounded,
information-seeking QA, which our dataset is designed to facilitate.
Related papers
- Qsnail: A Questionnaire Dataset for Sequential Question Generation [76.616068047362]
We present the first dataset specifically constructed for the questionnaire generation task, which comprises 13,168 human-written questionnaires.
We conduct experiments on Qsnail, and the results reveal that retrieval models and traditional generative models do not fully align with the given research topic and intents.
Despite enhancements through the chain-of-thought prompt and finetuning, questionnaires generated by language models still fall short of human-written questionnaires.
arXiv Detail & Related papers (2024-02-22T04:14:10Z) - PCoQA: Persian Conversational Question Answering Dataset [12.07607688189035]
The PCoQA dataset is a resource comprising information-seeking dialogs encompassing a total of 9,026 contextually-driven questions.
PCoQA is designed to present novel challenges compared to previous question answering datasets.
This paper not only presents the comprehensive PCoQA dataset but also reports the performance of various benchmark models.
arXiv Detail & Related papers (2023-12-07T15:29:34Z) - Answering Ambiguous Questions with a Database of Questions, Answers, and
Revisions [95.92276099234344]
We present a new state-of-the-art for answering ambiguous questions that exploits a database of unambiguous questions generated from Wikipedia.
Our method improves performance by 15% on recall measures and 10% on measures which evaluate disambiguating questions from predicted outputs.
arXiv Detail & Related papers (2023-08-16T20:23:16Z) - Modern Question Answering Datasets and Benchmarks: A Survey [5.026863544662493]
Question Answering (QA) is one of the most important natural language processing (NLP) tasks.
It aims using NLP technologies to generate a corresponding answer to a given question based on the massive unstructured corpus.
In this paper, we investigate influential QA datasets that have been released in the era of deep learning.
arXiv Detail & Related papers (2022-06-30T05:53:56Z) - Discourse Comprehension: A Question Answering Framework to Represent
Sentence Connections [35.005593397252746]
A key challenge in building and evaluating models for discourse comprehension is the lack of annotated data.
This paper presents a novel paradigm that enables scalable data collection targeting the comprehension of news documents.
The resulting corpus, DCQA, consists of 22,430 question-answer pairs across 607 English documents.
arXiv Detail & Related papers (2021-11-01T04:50:26Z) - GooAQ: Open Question Answering with Diverse Answer Types [63.06454855313667]
We present GooAQ, a large-scale dataset with a variety of answer types.
This dataset contains over 5 million questions and 3 million answers collected from Google.
arXiv Detail & Related papers (2021-04-18T05:40:39Z) - IIRC: A Dataset of Incomplete Information Reading Comprehension
Questions [53.3193258414806]
We present a dataset, IIRC, with more than 13K questions over paragraphs from English Wikipedia.
The questions were written by crowd workers who did not have access to any of the linked documents.
We follow recent modeling work on various reading comprehension datasets to construct a baseline model for this dataset.
arXiv Detail & Related papers (2020-11-13T20:59:21Z) - Challenges in Information-Seeking QA: Unanswerable Questions and
Paragraph Retrieval [46.3246135936476]
We analyze why answering information-seeking queries is more challenging and where their prevalent unanswerabilities arise.
Our controlled experiments suggest two headrooms -- paragraph selection and answerability prediction.
We manually annotate 800 unanswerable examples across six languages on what makes them challenging to answer.
arXiv Detail & Related papers (2020-10-22T17:48:17Z) - Inquisitive Question Generation for High Level Text Comprehension [60.21497846332531]
We introduce INQUISITIVE, a dataset of 19K questions that are elicited while a person is reading through a document.
We show that readers engage in a series of pragmatic strategies to seek information.
We evaluate question generation models based on GPT-2 and show that our model is able to generate reasonable questions.
arXiv Detail & Related papers (2020-10-04T19:03:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.