Gaussian Continuous-Variable Isotropic State
- URL: http://arxiv.org/abs/2105.03141v3
- Date: Thu, 16 Sep 2021 09:28:23 GMT
- Title: Gaussian Continuous-Variable Isotropic State
- Authors: Maria Poxleitner and Haye Hinrichsen
- Abstract summary: We study the non-classical correlations contained in a two-mode Gaussian analogue of an isotropic state.
It turns out that it exhibits an analogous phenomenology as the finite-dimensional two-qubit isotropic state.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inspired by the definition of the non-Gaussian two-parametric continuous
variable analogue of an isotropic state introduced by Mi\v{s}ta et al. [Phys.
Rev. A, 65, 062315 (2002); arXiv:quant-ph/0112062], we propose to take the
Gaussian part of this state as an independent state by itself, which yields a
simple, but with respect to the correlation structure interesting example of a
two-mode Gaussian analogue of an isotropic state. Unlike conventional isotropic
states which are defined as a convex combination of a thermal and an entangled
density operator, the Gaussian version studied here is defined by a convex
combination of the corresponding covariance matrices and can be understood as
entangled pure state with additional Gaussian noise controlled by a mixing
probability. Using various entanglement criteria and measures, we study the
non-classical correlations contained in this state. Unlike the previously
studied non-Gaussian two-parametric isotropic state, the Gaussian state
considered here features a finite threshold in the parameter space where
entanglement sets in. In particular, it turns out that it exhibits an analogous
phenomenology as the finite-dimensional two-qubit isotropic state.
Related papers
- Curvature of Gaussian quantum states [0.0]
The space of quantum states can be endowed with a metric structure using the second order derivatives of the relative entropy, giving rise to the so-called Kubo-Mori-Bogoliubov inner product.
arXiv Detail & Related papers (2024-04-15T09:14:10Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Reflection coupling for unadjusted generalized Hamiltonian Monte Carlo in the nonconvex stochastic gradient case [0.0]
Contraction in Wasserstein 1-distance with explicit rates is established for generalized Hamiltonian Monte Carlo with gradients under possibly non diffusion conditions.
The algorithms considered include kinetic splitting schemes of Langevin, commonly used in molecular dynamics simulations.
arXiv Detail & Related papers (2023-10-28T18:25:59Z) - Covariant operator bases for continuous variables [0.0]
We work out an alternative basis consisting of monomials on the basic observables, with the crucial property of behaving well under symplectic transformations.
Given the density matrix of a state, the expansion coefficients in that basis constitute the multipoles, which describe the state in a canonically covariant form that is both concise and explicit.
arXiv Detail & Related papers (2023-09-18T18:00:15Z) - Entanglement entropy in conformal quantum mechanics [68.8204255655161]
We consider sets of states in conformal quantum mechanics associated to generators of time evolution whose orbits cover different regions of the time domain.
States labelled by a continuous global time variable define the two-point correlation functions of the theory seen as a one-dimensional conformal field theory.
arXiv Detail & Related papers (2023-06-21T14:21:23Z) - Thermal equilibrium in Gaussian dynamical semigroups [77.34726150561087]
We characterize all Gaussian dynamical semigroups in continuous variables quantum systems of n-bosonic modes which have a thermal Gibbs state as a stationary solution.
We also show that Alicki's quantum detailed-balance condition, based on a Gelfand-Naimark-Segal inner product, allows the determination of the temperature dependence of the diffusion and dissipation matrices.
arXiv Detail & Related papers (2022-07-11T19:32:17Z) - Symmetry-resolved Page curves [0.0]
We study a natural extension in the presence of a conservation law and introduce the symmetry-resolved Page curves.
We derive explicit analytic formulae for two important statistical ensembles with a $U(1)$-symmetry.
arXiv Detail & Related papers (2022-06-10T13:22:14Z) - Deterministic Gaussian conversion protocols for non-Gaussian single-mode
resources [58.720142291102135]
We show that cat and binomial states are approximately equivalent for finite energy, while this equivalence was previously known only in the infinite-energy limit.
We also consider the generation of cat states from photon-added and photon-subtracted squeezed states, improving over known schemes by introducing additional squeezing operations.
arXiv Detail & Related papers (2022-04-07T11:49:54Z) - Dissipative evolution of quantum Gaussian states [68.8204255655161]
We derive a new model of dissipative time evolution based on unitary Lindblad operators.
As we demonstrate, the considered evolution proves useful both as a description for random scattering and as a tool in dissipator engineering.
arXiv Detail & Related papers (2021-05-26T16:03:34Z) - A pedagogical note on the computation of relative entropy of two
$n$-mode gaussian states [0.0]
We present a formula for the relative entropy S(rho||sigma) of two n mode gaussian states rho, in the boson Fock space.
arXiv Detail & Related papers (2021-02-12T14:42:42Z) - Local optimization on pure Gaussian state manifolds [63.76263875368856]
We exploit insights into the geometry of bosonic and fermionic Gaussian states to develop an efficient local optimization algorithm.
The method is based on notions of descent gradient attuned to the local geometry.
We use the presented methods to collect numerical and analytical evidence for the conjecture that Gaussian purifications are sufficient to compute the entanglement of purification of arbitrary mixed Gaussian states.
arXiv Detail & Related papers (2020-09-24T18:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.