Crossing time in the Landau-Zener quantum dynamics in a super Ohmic
environment
- URL: http://arxiv.org/abs/2105.03526v1
- Date: Fri, 7 May 2021 22:24:20 GMT
- Title: Crossing time in the Landau-Zener quantum dynamics in a super Ohmic
environment
- Authors: Peter Nalbach
- Abstract summary: We study the dynamics of a quantum two state system driven through an avoided crossing.
We determine the dynamics and the Landau-Zener probability employing the numerical exact quasi-adiabatic path.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the dynamics of a quantum two state system driven through an avoided
crossing under the influence of a super Ohmic environment, i.e. a longitudinal
as well as a transversal one. The crossing time window, in which relaxation
influences the dynamics, is centered around the avoided crossing. We determine
the dynamics and the Landau-Zener probability employing the numerical exact
quasi-adiabatic path integral. At weak coupling we show that the numerically
less demanding nonequilibrium Bloch equations provide an accurate description.
The crossing time depends strongly not only on the system-bath coupling
strength but also on the bath spectral cut-off frequency in contrast to the
situation in an Ohmic bath. Our results enable to design quantitative protocols
which drive quantum systems out of the influence range of relaxation.
Related papers
- Decoherence of a charged Brownian particle in a magnetic field : an analysis of the roles of coupling via position and momentum variables [0.0]
We study the dynamics of a harmonically oscillating charged Brownian particle coupled to an Ohmic heat bath via both position and momentum couplings.
The presence of both position and momentum couplings leads to a stronger interaction with the environment, resulting in a faster loss of coherence.
In addition, the magnetic field results in the slowing down of the loss of information from the system, irrespective of the nature of coupling between the system and the bath.
arXiv Detail & Related papers (2024-04-22T05:10:02Z) - Dissipative frequency converter: from Lindblad dynamics to non-Hermitian topology [0.0]
A topological frequency converter represents a dynamical counterpart of the integer quantum Hall effect.
We consider dissipative channels corresponding to spontaneous decay and dephasing in the instantaneous eigenbasis of the Hamiltonian.
We find a transition from the unperturbed dynamics to a quantum watchdog effect, which destroys any power transfer in the strong coupling limit.
arXiv Detail & Related papers (2024-03-12T18:00:58Z) - Dephasing and pseudo-coherent quantum dynamics in super-Ohmic
environments [0.0]
We investigate within a spin-boson model the influence of a super-Ohmic environment on the dynamics of a quantum two-state system.
Super-Ohmic purely dephasing fluctuations strongly suppress the amplitude of coherent dynamics at very short times.
The according phase separation line shows also a non-monotonous behaviour, very similar to the pseudo-coherent dynamics.
arXiv Detail & Related papers (2023-03-31T17:11:03Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - The tunable 0-\texorpdfstring{$\pi$}{Lg} qubit: Dynamics and Relaxation [0.0]
We present a systematic treatment of a 0-texorpdfstring$pi$Lg qubit in the presence of a time-dependent external flux.
The effect of the flux noise on the qubit relaxation is obtained using perturbation theory.
arXiv Detail & Related papers (2022-11-17T04:39:31Z) - Unification of Random Dynamical Decoupling and the Quantum Zeno Effect [68.8204255655161]
We show that the system dynamics under random dynamical decoupling converges to a unitary with a decoupling error that characteristically depends on the convergence speed of the Zeno limit.
This reveals a unification of the random dynamical decoupling and the quantum Zeno effect.
arXiv Detail & Related papers (2021-12-08T11:41:38Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z) - Dissipative dynamics of an interacting spin system with collective
damping [1.3980986259786221]
Hamiltonian and Lindblad dynamics in quantum systems give rise to non-equillibrium phenomena.
In this paper, we investigate this interplay of dynamics in infinite range Heisenberg model coupled to a non-Markovian bath.
arXiv Detail & Related papers (2018-03-03T14:13:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.