Comprehensive Study: How the Context Information of Different
Granularity Affects Dialogue State Tracking?
- URL: http://arxiv.org/abs/2105.03571v1
- Date: Sat, 8 May 2021 03:18:13 GMT
- Title: Comprehensive Study: How the Context Information of Different
Granularity Affects Dialogue State Tracking?
- Authors: Puhai Yang and Heyan Huang and Xian-Ling Mao
- Abstract summary: Dialogue state tracking (DST) plays a key role in task-oriented dialogue systems to monitor the user's goal.
In general, there are two strategies to track a dialogue state: predicting it from scratch and updating it from previous state.
- Score: 17.476030563395714
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dialogue state tracking (DST) plays a key role in task-oriented dialogue
systems to monitor the user's goal. In general, there are two strategies to
track a dialogue state: predicting it from scratch and updating it from
previous state. The scratch-based strategy obtains each slot value by inquiring
all the dialogue history, and the previous-based strategy relies on the current
turn dialogue to update the previous dialogue state. However, it is hard for
the scratch-based strategy to correctly track short-dependency dialogue state
because of noise; meanwhile, the previous-based strategy is not very useful for
long-dependency dialogue state tracking. Obviously, it plays different roles
for the context information of different granularity to track different kinds
of dialogue states. Thus, in this paper, we will study and discuss how the
context information of different granularity affects dialogue state tracking.
First, we explore how greatly different granularities affect dialogue state
tracking. Then, we further discuss how to combine multiple granularities for
dialogue state tracking. Finally, we apply the findings about context
granularity to few-shot learning scenario. Besides, we have publicly released
all codes\footnote{\url{https://anonymous}}.
Related papers
- Enhancing Visual Dialog State Tracking through Iterative Object-Entity Alignment in Multi-Round Conversations [3.784841749866846]
We introduce Multi-round Dialogue State Tracking model (MDST)
MDST captures each round of dialog history, constructing internal dialogue state representations defined as 2-tuples of vision-language representations.
Experimental results on the VisDial v1.0 dataset demonstrate that MDST achieves a new state-of-the-art performance in generative setting.
arXiv Detail & Related papers (2024-08-13T08:36:15Z) - FCC: Fusing Conversation History and Candidate Provenance for Contextual
Response Ranking in Dialogue Systems [53.89014188309486]
We present a flexible neural framework that can integrate contextual information from multiple channels.
We evaluate our model on the MSDialog dataset widely used for evaluating conversational response ranking tasks.
arXiv Detail & Related papers (2023-03-31T23:58:28Z) - Multimodal Dialogue State Tracking [97.25466640240619]
Video-Dialogue Transformer Network (VDTN) learns contextual dependencies between videos and dialogues to generate multimodal dialogue states.
VDTN combines both object-level features and segment-level features and learns contextual dependencies between videos and dialogues to generate multimodal dialogue states.
arXiv Detail & Related papers (2022-06-16T03:18:42Z) - Beyond the Granularity: Multi-Perspective Dialogue Collaborative
Selection for Dialogue State Tracking [18.172993687706708]
In dialogue state tracking, dialogue history is a crucial material, and its utilization varies between different models.
We propose DiCoS-DST to dynamically select the relevant dialogue contents corresponding to each slot for state updating.
Our approach achieves new state-of-the-art performance on MultiWOZ 2.1 and MultiWOZ 2.2, and achieves superior performance on multiple mainstream benchmark datasets.
arXiv Detail & Related papers (2022-05-20T10:08:45Z) - HybriDialogue: An Information-Seeking Dialogue Dataset Grounded on
Tabular and Textual Data [87.67278915655712]
We present a new dialogue dataset, HybriDialogue, which consists of crowdsourced natural conversations grounded on both Wikipedia text and tables.
The conversations are created through the decomposition of complex multihop questions into simple, realistic multiturn dialogue interactions.
arXiv Detail & Related papers (2022-04-28T00:52:16Z) - In-Context Learning for Few-Shot Dialogue State Tracking [55.91832381893181]
We propose an in-context (IC) learning framework for few-shot dialogue state tracking (DST)
A large pre-trained language model (LM) takes a test instance and a few annotated examples as input, and directly decodes the dialogue states without any parameter updates.
This makes the LM more flexible and scalable compared to prior few-shot DST work when adapting to new domains and scenarios.
arXiv Detail & Related papers (2022-03-16T11:58:24Z) - Dialogue Summaries as Dialogue States (DS2), Template-Guided
Summarization for Few-shot Dialogue State Tracking [16.07100713414678]
Few-shot dialogue state tracking (DST) is a realistic solution to this problem.
We propose to reformulate dialogue state tracking as a dialogue summarization problem.
arXiv Detail & Related papers (2022-03-03T07:54:09Z) - Domain State Tracking for a Simplified Dialogue System [3.962145079528281]
We present DoTS, a task-oriented dialogue system that uses a simplified input context instead of the entire dialogue history.
DoTS improves the inform rate and success rate by 1.09 points and 1.24 points, respectively, compared to the previous state-of-the-art model on MultiWOZ.
arXiv Detail & Related papers (2021-03-11T13:00:54Z) - Learning Reasoning Paths over Semantic Graphs for Video-grounded
Dialogues [73.04906599884868]
We propose a novel framework of Reasoning Paths in Dialogue Context (PDC)
PDC model discovers information flows among dialogue turns through a semantic graph constructed based on lexical components in each question and answer.
Our model sequentially processes both visual and textual information through this reasoning path and the propagated features are used to generate the answer.
arXiv Detail & Related papers (2021-03-01T07:39:26Z) - Rethinking Dialogue State Tracking with Reasoning [76.0991910623001]
This paper proposes to track dialogue states gradually with reasoning over dialogue turns with the help of the back-end data.
Empirical results demonstrate that our method significantly outperforms the state-of-the-art methods by 38.6% in terms of joint belief accuracy for MultiWOZ 2.1.
arXiv Detail & Related papers (2020-05-27T02:05:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.