Improving Cross-Lingual Reading Comprehension with Self-Training
- URL: http://arxiv.org/abs/2105.03627v1
- Date: Sat, 8 May 2021 08:04:30 GMT
- Title: Improving Cross-Lingual Reading Comprehension with Self-Training
- Authors: Wei-Cheng Huang, Chien-yu Huang, Hung-yi Lee
- Abstract summary: Current state-of-the-art models even surpass human performance on several benchmarks.
Previous works have revealed the abilities of pre-trained multilingual models for zero-shot cross-lingual reading comprehension.
This paper further utilized unlabeled data to improve the performance.
- Score: 62.73937175625953
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Substantial improvements have been made in machine reading comprehension,
where the machine answers questions based on a given context. Current
state-of-the-art models even surpass human performance on several benchmarks.
However, their abilities in the cross-lingual scenario are still to be
explored. Previous works have revealed the abilities of pre-trained
multilingual models for zero-shot cross-lingual reading comprehension. In this
paper, we further utilized unlabeled data to improve the performance. The model
is first supervised-trained on source language corpus, and then self-trained
with unlabeled target language data. The experiment results showed improvements
for all languages, and we also analyzed how self-training benefits
cross-lingual reading comprehension in qualitative aspects.
Related papers
- Evaluating and explaining training strategies for zero-shot cross-lingual news sentiment analysis [8.770572911942635]
We introduce novel evaluation datasets in several less-resourced languages.
We experiment with a range of approaches including the use of machine translation.
We show that language similarity is not in itself sufficient for predicting the success of cross-lingual transfer.
arXiv Detail & Related papers (2024-09-30T07:59:41Z) - Automatic Discrimination of Human and Neural Machine Translation in
Multilingual Scenarios [4.631167282648452]
We tackle the task of automatically discriminating between human and machine translations.
We perform experiments in a multilingual setting, considering multiple languages and multilingual pretrained language models.
arXiv Detail & Related papers (2023-05-31T11:41:24Z) - Analyzing the Mono- and Cross-Lingual Pretraining Dynamics of
Multilingual Language Models [73.11488464916668]
This study investigates the dynamics of the multilingual pretraining process.
We probe checkpoints taken from throughout XLM-R pretraining, using a suite of linguistic tasks.
Our analysis shows that the model achieves high in-language performance early on, with lower-level linguistic skills acquired before more complex ones.
arXiv Detail & Related papers (2022-05-24T03:35:00Z) - From Good to Best: Two-Stage Training for Cross-lingual Machine Reading
Comprehension [51.953428342923885]
We develop a two-stage approach to enhance the model performance.
The first stage targets at recall: we design a hard-learning (HL) algorithm to maximize the likelihood that the top-k predictions contain the accurate answer.
The second stage focuses on precision: an answer-aware contrastive learning mechanism is developed to learn the fine difference between the accurate answer and other candidates.
arXiv Detail & Related papers (2021-12-09T07:31:15Z) - Bilingual Alignment Pre-training for Zero-shot Cross-lingual Transfer [33.680292990007366]
In this paper, we aim to improve the zero-shot cross-lingual transfer performance by aligning the embeddings better.
We propose a pre-training task named Alignment Language Model (AlignLM) which uses the statistical alignment information as the prior knowledge to guide bilingual word prediction.
The results show AlignLM can improve the zero-shot performance significantly on MLQA and XNLI datasets.
arXiv Detail & Related papers (2021-06-03T10:18:43Z) - Cross-lingual Spoken Language Understanding with Regularized
Representation Alignment [71.53159402053392]
We propose a regularization approach to align word-level and sentence-level representations across languages without any external resource.
Experiments on the cross-lingual spoken language understanding task show that our model outperforms current state-of-the-art methods in both few-shot and zero-shot scenarios.
arXiv Detail & Related papers (2020-09-30T08:56:53Z) - InfoXLM: An Information-Theoretic Framework for Cross-Lingual Language
Model Pre-Training [135.12061144759517]
We present an information-theoretic framework that formulates cross-lingual language model pre-training.
We propose a new pre-training task based on contrastive learning.
By leveraging both monolingual and parallel corpora, we jointly train the pretext to improve the cross-lingual transferability of pre-trained models.
arXiv Detail & Related papers (2020-07-15T16:58:01Z) - Exploring Fine-tuning Techniques for Pre-trained Cross-lingual Models
via Continual Learning [74.25168207651376]
Fine-tuning pre-trained language models to downstream cross-lingual tasks has shown promising results.
We leverage continual learning to preserve the cross-lingual ability of the pre-trained model when we fine-tune it to downstream tasks.
Our methods achieve better performance than other fine-tuning baselines on the zero-shot cross-lingual part-of-speech tagging and named entity recognition tasks.
arXiv Detail & Related papers (2020-04-29T14:07:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.