Meta-Cal: Well-controlled Post-hoc Calibration by Ranking
- URL: http://arxiv.org/abs/2105.04290v1
- Date: Mon, 10 May 2021 12:00:54 GMT
- Title: Meta-Cal: Well-controlled Post-hoc Calibration by Ranking
- Authors: Xingchen Ma, Matthew B. Blaschko
- Abstract summary: Post-hoc calibration is a technique to recalibrate a model, and its goal is to learn a calibration map.
Existing approaches mostly focus on constructing calibration maps with low calibration errors.
We study post-hoc calibration for multi-class classification under constraints, as a calibrator with a low calibration error does not necessarily mean it is useful in practice.
- Score: 23.253020991581963
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In many applications, it is desirable that a classifier not only makes
accurate predictions, but also outputs calibrated probabilities. However, many
existing classifiers, especially deep neural network classifiers, tend not to
be calibrated. Post-hoc calibration is a technique to recalibrate a model, and
its goal is to learn a calibration map. Existing approaches mostly focus on
constructing calibration maps with low calibration errors. Contrary to these
methods, we study post-hoc calibration for multi-class classification under
constraints, as a calibrator with a low calibration error does not necessarily
mean it is useful in practice. In this paper, we introduce two practical
constraints to be taken into consideration. We then present Meta-Cal, which is
built from a base calibrator and a ranking model. Under some mild assumptions,
two high-probability bounds are given with respect to these constraints.
Empirical results on CIFAR-10, CIFAR-100 and ImageNet and a range of popular
network architectures show our proposed method significantly outperforms the
current state of the art for post-hoc multi-class classification calibration.
Related papers
- Confidence Calibration of Classifiers with Many Classes [5.018156030818883]
For classification models based on neural networks, the maximum predicted class probability is often used as a confidence score.
This score rarely predicts well the probability of making a correct prediction and requires a post-processing calibration step.
arXiv Detail & Related papers (2024-11-05T10:51:01Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
We introduce kernel-based calibration metrics that unify and generalize popular forms of calibration for both classification and regression.
These metrics admit differentiable sample estimates, making it easy to incorporate a calibration objective into empirical risk minimization.
We provide intuitive mechanisms to tailor calibration metrics to a decision task, and enforce accurate loss estimation and no regret decisions.
arXiv Detail & Related papers (2023-10-31T06:19:40Z) - Class-wise and reduced calibration methods [0.0]
We show how a reduced calibration method transforms the original problem into a simpler one.
Second, we propose class-wise calibration methods, based on building on a phenomenon called neural collapse.
Applying the two methods together results in class-wise reduced calibration algorithms, which are powerful tools for reducing the prediction and per-class calibration errors.
arXiv Detail & Related papers (2022-10-07T17:13:17Z) - T-Cal: An optimal test for the calibration of predictive models [49.11538724574202]
We consider detecting mis-calibration of predictive models using a finite validation dataset as a hypothesis testing problem.
detecting mis-calibration is only possible when the conditional probabilities of the classes are sufficiently smooth functions of the predictions.
We propose T-Cal, a minimax test for calibration based on a de-biased plug-in estimator of the $ell$-Expected Error (ECE)
arXiv Detail & Related papers (2022-03-03T16:58:54Z) - Taking a Step Back with KCal: Multi-Class Kernel-Based Calibration for
Deep Neural Networks [40.282423098764404]
This paper proposes a new Kernel-based calibration method called KCal.
Unlike other calibration procedures, KCal does not operate directly on the logits or softmax outputs of the DNN.
In effect, KCal amounts to a supervised dimensionality reduction of the neural network embedding.
arXiv Detail & Related papers (2022-02-15T19:04:05Z) - Top-label calibration [3.3504365823045044]
We study the problem of post-hoc calibration for multiclass classification, with an emphasis on histogram binning.
We find that the popular notion of confidence calibration is not sufficiently strong -- there exist predictors that are not calibrated in any meaningful way but are perfectly confidence calibrated.
We propose a closely related (but subtly different) notion, top-label calibration, that accurately captures the intuition and simplicity of confidence calibration, but addresses its drawbacks.
arXiv Detail & Related papers (2021-07-18T03:27:50Z) - On the Dark Side of Calibration for Modern Neural Networks [65.83956184145477]
We show the breakdown of expected calibration error (ECE) into predicted confidence and refinement.
We highlight that regularisation based calibration only focuses on naively reducing a model's confidence.
We find that many calibration approaches with the likes of label smoothing, mixup etc. lower the utility of a DNN by degrading its refinement.
arXiv Detail & Related papers (2021-06-17T11:04:14Z) - Localized Calibration: Metrics and Recalibration [133.07044916594361]
We propose a fine-grained calibration metric that spans the gap between fully global and fully individualized calibration.
We then introduce a localized recalibration method, LoRe, that improves the LCE better than existing recalibration methods.
arXiv Detail & Related papers (2021-02-22T07:22:12Z) - Uncertainty Quantification and Deep Ensembles [79.4957965474334]
We show that deep-ensembles do not necessarily lead to improved calibration properties.
We show that standard ensembling methods, when used in conjunction with modern techniques such as mixup regularization, can lead to less calibrated models.
This text examines the interplay between three of the most simple and commonly used approaches to leverage deep learning when data is scarce.
arXiv Detail & Related papers (2020-07-17T07:32:24Z) - Unsupervised Calibration under Covariate Shift [92.02278658443166]
We introduce the problem of calibration under domain shift and propose an importance sampling based approach to address it.
We evaluate and discuss the efficacy of our method on both real-world datasets and synthetic datasets.
arXiv Detail & Related papers (2020-06-29T21:50:07Z) - Multi-Class Uncertainty Calibration via Mutual Information
Maximization-based Binning [8.780958735684958]
Post-hoc multi-class calibration is a common approach for providing confidence estimates of deep neural network predictions.
Recent work has shown that widely used scaling methods underestimate their calibration error.
We propose a shared class-wise (sCW) calibration strategy, sharing one calibrator among similar classes.
arXiv Detail & Related papers (2020-06-23T15:31:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.