Local approximate Gaussian process regression for data-driven
constitutive laws: Development and comparison with neural networks
- URL: http://arxiv.org/abs/2105.04554v1
- Date: Fri, 7 May 2021 14:49:28 GMT
- Title: Local approximate Gaussian process regression for data-driven
constitutive laws: Development and comparison with neural networks
- Authors: Jan Niklas Fuhg, Michele Marino, Nikolaos Bouklas
- Abstract summary: We show how to use local approximate process regression to predict stress outputs at particular strain space locations.
A modified Newton-Raphson approach is proposed to accommodate for the local nature of the laGPR approximation when solving the global structural problem in a FE setting.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Hierarchical computational methods for multiscale mechanics such as the
FE$^2$ and FE-FFT methods are generally accompanied by high computational
costs. Data-driven approaches are able to speed the process up significantly by
enabling to incorporate the effective micromechanical response in macroscale
simulations without the need of performing additional computations at each
Gauss point explicitly. Traditionally artificial neural networks (ANNs) have
been the surrogate modeling technique of choice in the solid mechanics
community. However they suffer from severe drawbacks due to their parametric
nature and suboptimal training and inference properties for the investigated
datasets in a three dimensional setting. These problems can be avoided using
local approximate Gaussian process regression (laGPR). This method can allow
the prediction of stress outputs at particular strain space locations by
training local regression models based on Gaussian processes, using only a
subset of the data for each local model, offering better and more reliable
accuracy than ANNs. A modified Newton-Raphson approach is proposed to
accommodate for the local nature of the laGPR approximation when solving the
global structural problem in a FE setting. Hence, the presented work offers a
complete and general framework enabling multiscale calculations combining a
data-driven constitutive prediction using laGPR, and macroscopic calculations
using an FE scheme that we test for finite-strain three-dimensional
hyperelastic problems.
Related papers
- Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference [55.150117654242706]
We show that model selection for computation-aware GPs trained on 1.8 million data points can be done within a few hours on a single GPU.
As a result of this work, Gaussian processes can be trained on large-scale datasets without significantly compromising their ability to quantify uncertainty.
arXiv Detail & Related papers (2024-11-01T21:11:48Z) - Sparse Variational Contaminated Noise Gaussian Process Regression with Applications in Geomagnetic Perturbations Forecasting [4.675221539472143]
We propose a scalable inference algorithm for fitting sparse Gaussian process regression models with contaminated normal noise on large datasets.
We show that our approach yields shorter prediction intervals for similar coverage and accuracy when compared to an artificial dense neural network baseline.
arXiv Detail & Related papers (2024-02-27T15:08:57Z) - Score-based Diffusion Models in Function Space [140.792362459734]
Diffusion models have recently emerged as a powerful framework for generative modeling.
We introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - A hybrid data driven-physics constrained Gaussian process regression
framework with deep kernel for uncertainty quantification [21.972192114861873]
We propose a hybrid data driven-physics constrained Gaussian process regression framework.
We encode the physics knowledge with Boltzmann-Gibbs distribution and derive our model through maximum likelihood (ML) approach.
The proposed model achieves good results in high-dimensional problem, and correctly propagate the uncertainty, with very limited labelled data provided.
arXiv Detail & Related papers (2022-05-13T07:53:49Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Probabilistic partition of unity networks: clustering based deep
approximation [0.0]
Partition of unity networks (POU-Nets) have been shown capable of realizing algebraic convergence rates for regression and solution of PDEs.
We enrich POU-Nets with a Gaussian noise model to obtain a probabilistic generalization amenable to gradient-based generalizations of a maximum likelihood loss.
We provide benchmarks quantifying performance in high/low-dimensions, demonstrating that convergence rates depend only on the latent dimension of data within high-dimensional space.
arXiv Detail & Related papers (2021-07-07T08:02:00Z) - Reinforcement Learning for Adaptive Mesh Refinement [63.7867809197671]
We propose a novel formulation of AMR as a Markov decision process and apply deep reinforcement learning to train refinement policies directly from simulation.
The model sizes of these policy architectures are independent of the mesh size and hence scale to arbitrarily large and complex simulations.
arXiv Detail & Related papers (2021-03-01T22:55:48Z) - Fast covariance parameter estimation of spatial Gaussian process models
using neural networks [0.0]
We train NNs to take moderate size spatial fields or variograms as input and return the range and noise-to-signal covariance parameters.
Once trained, the NNs provide estimates with a similar accuracy compared to ML estimation and at a speedup by a factor of 100 or more.
This work can be easily extended to other, more complex, spatial problems and provides a proof-of-concept for this use of machine learning in computational statistics.
arXiv Detail & Related papers (2020-12-30T22:06:26Z) - Efficient semidefinite-programming-based inference for binary and
multi-class MRFs [83.09715052229782]
We propose an efficient method for computing the partition function or MAP estimate in a pairwise MRF.
We extend semidefinite relaxations from the typical binary MRF to the full multi-class setting, and develop a compact semidefinite relaxation that can again be solved efficiently using the solver.
arXiv Detail & Related papers (2020-12-04T15:36:29Z) - Real-Time Regression with Dividing Local Gaussian Processes [62.01822866877782]
Local Gaussian processes are a novel, computationally efficient modeling approach based on Gaussian process regression.
Due to an iterative, data-driven division of the input space, they achieve a sublinear computational complexity in the total number of training points in practice.
A numerical evaluation on real-world data sets shows their advantages over other state-of-the-art methods in terms of accuracy as well as prediction and update speed.
arXiv Detail & Related papers (2020-06-16T18:43:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.