Sample and Computation Redistribution for Efficient Face Detection
- URL: http://arxiv.org/abs/2105.04714v1
- Date: Mon, 10 May 2021 23:51:14 GMT
- Title: Sample and Computation Redistribution for Efficient Face Detection
- Authors: Jia Guo and Jiankang Deng and Alexandros Lattas and Stefanos Zafeiriou
- Abstract summary: Training data sampling and computation distribution strategies are the keys to efficient and accurate face detection.
scrfdf34 outperforms the best competitor, TinaFace, by $3.86%$ (AP at hard set) while being more than emph3$times$ faster on GPUs with VGA-resolution images.
- Score: 137.19388513633484
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although tremendous strides have been made in uncontrolled face detection,
efficient face detection with a low computation cost as well as high precision
remains an open challenge. In this paper, we point out that training data
sampling and computation distribution strategies are the keys to efficient and
accurate face detection. Motivated by these observations, we introduce two
simple but effective methods (1) Sample Redistribution (SR), which augments
training samples for the most needed stages, based on the statistics of
benchmark datasets; and (2) Computation Redistribution (CR), which reallocates
the computation between the backbone, neck and head of the model, based on a
meticulously defined search methodology. Extensive experiments conducted on
WIDER FACE demonstrate the state-of-the-art efficiency-accuracy trade-off for
the proposed \scrfd family across a wide range of compute regimes. In
particular, \scrfdf{34} outperforms the best competitor, TinaFace, by $3.86\%$
(AP at hard set) while being more than \emph{3$\times$ faster} on GPUs with
VGA-resolution images. We also release our code to facilitate future research.
Related papers
- Efficient NeRF Optimization -- Not All Samples Remain Equally Hard [9.404889815088161]
We propose an application of online hard sample mining for efficient training of Neural Radiance Fields (NeRF)
NeRF models produce state-of-the-art quality for many 3D reconstruction and rendering tasks but require substantial computational resources.
arXiv Detail & Related papers (2024-08-06T13:49:01Z) - Surrogate Lagrangian Relaxation: A Path To Retrain-free Deep Neural
Network Pruning [9.33753001494221]
Network pruning is a widely used technique to reduce computation cost and model size for deep neural networks.
In this paper, we develop a systematic weight-pruning optimization approach based on Surrogate Lagrangian relaxation.
arXiv Detail & Related papers (2023-04-08T22:48:30Z) - Boosting Low-Data Instance Segmentation by Unsupervised Pre-training
with Saliency Prompt [103.58323875748427]
This work offers a novel unsupervised pre-training solution for low-data regimes.
Inspired by the recent success of the Prompting technique, we introduce a new pre-training method that boosts QEIS models.
Experimental results show that our method significantly boosts several QEIS models on three datasets.
arXiv Detail & Related papers (2023-02-02T15:49:03Z) - FasterPose: A Faster Simple Baseline for Human Pose Estimation [65.8413964785972]
We propose a design paradigm for cost-effective network with LR representation for efficient pose estimation, named FasterPose.
We study the training behavior of FasterPose, and formulate a novel regressive cross-entropy (RCE) loss function for accelerating the convergence.
Compared with the previously dominant network of pose estimation, our method reduces 58% of the FLOPs and simultaneously gains 1.3% improvement of accuracy.
arXiv Detail & Related papers (2021-07-07T13:39:08Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
This paper proposes a series of systematic optimization strategies for the detection pipeline of one-stage detector.
It forms a single shot anchor-based detector (SADet) for efficient and accurate pedestrian detection.
Though structurally simple, it presents state-of-the-art result and real-time speed of $20$ FPS for VGA-resolution images.
arXiv Detail & Related papers (2020-07-26T12:32:38Z) - Learning Robust Feature Representations for Scene Text Detection [0.0]
We present a network architecture derived from the loss to maximize conditional log-likelihood.
By extending the layer of latent variables to multiple layers, the network is able to learn robust features on scale.
In experiments, the proposed algorithm significantly outperforms state-of-the-art methods in terms of both recall and precision.
arXiv Detail & Related papers (2020-05-26T01:06:47Z) - 3DSSD: Point-based 3D Single Stage Object Detector [61.67928229961813]
We present a point-based 3D single stage object detector, named 3DSSD, achieving a good balance between accuracy and efficiency.
Our method outperforms all state-of-the-art voxel-based single stage methods by a large margin, and has comparable performance to two stage point-based methods as well.
arXiv Detail & Related papers (2020-02-24T12:01:58Z) - Towards High Performance Human Keypoint Detection [87.1034745775229]
We find that context information plays an important role in reasoning human body configuration and invisible keypoints.
Inspired by this, we propose a cascaded context mixer ( CCM) which efficiently integrates spatial and channel context information.
To maximize CCM's representation capability, we develop a hard-negative person detection mining strategy and a joint-training strategy.
We present several sub-pixel refinement techniques for postprocessing keypoint predictions to improve detection accuracy.
arXiv Detail & Related papers (2020-02-03T02:24:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.