Separate but Together: Unsupervised Federated Learning for Speech
Enhancement from Non-IID Data
- URL: http://arxiv.org/abs/2105.04727v1
- Date: Tue, 11 May 2021 00:47:18 GMT
- Title: Separate but Together: Unsupervised Federated Learning for Speech
Enhancement from Non-IID Data
- Authors: Efthymios Tzinis, Jonah Casebeer, Zhepei Wang, Paris Smaragdis
- Abstract summary: We propose FEDENHANCE, an unsupervised federated learning (FL) approach for speech enhancement and separation.
We simulate a real-world scenario where each client only has access to a few noisy recordings from a limited and disjoint number of speakers.
Our experiments show that our approach achieves competitive enhancement performance compared to IID training on a single device.
- Score: 27.51123821674191
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose FEDENHANCE, an unsupervised federated learning (FL) approach for
speech enhancement and separation with non-IID distributed data across multiple
clients. We simulate a real-world scenario where each client only has access to
a few noisy recordings from a limited and disjoint number of speakers (hence
non-IID). Each client trains their model in isolation using mixture invariant
training while periodically providing updates to a central server. Our
experiments show that our approach achieves competitive enhancement performance
compared to IID training on a single device and that we can further facilitate
the convergence speed and the overall performance using transfer learning on
the server-side. Moreover, we show that we can effectively combine updates from
clients trained locally with supervised and unsupervised losses. We also
release a new dataset LibriFSD50K and its creation recipe in order to
facilitate FL research for source separation problems.
Related papers
- Scalable Federated Unlearning via Isolated and Coded Sharding [76.12847512410767]
Federated unlearning has emerged as a promising paradigm to erase the client-level data effect.
This paper proposes a scalable federated unlearning framework based on isolated sharding and coded computing.
arXiv Detail & Related papers (2024-01-29T08:41:45Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Effectively Heterogeneous Federated Learning: A Pairing and Split
Learning Based Approach [16.093068118849246]
This paper presents a novel split federated learning (SFL) framework that pairs clients with different computational resources.
A greedy algorithm is proposed by reconstructing the optimization of training latency as a graph edge selection problem.
Simulation results show the proposed method can significantly improve the FL training speed and achieve high performance.
arXiv Detail & Related papers (2023-08-26T11:10:54Z) - SemiSFL: Split Federated Learning on Unlabeled and Non-IID Data [34.49090830845118]
Federated Learning (FL) has emerged to allow multiple clients to collaboratively train machine learning models on their private data at the network edge.
We propose a novel Semi-supervised SFL system, termed SemiSFL, which incorporates clustering regularization to perform SFL with unlabeled and non-IID client data.
Our system provides a 3.8x speed-up in training time, reduces the communication cost by about 70.3% while reaching the target accuracy, and achieves up to 5.8% improvement in accuracy under non-IID scenarios.
arXiv Detail & Related papers (2023-07-29T02:35:37Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Federated Learning with Server Learning: Enhancing Performance for
Non-IID Data [5.070289965695956]
Federated Learning (FL) has emerged as a means of distributed learning using local data stored at clients with a coordinating server.
Recent studies showed that FL can suffer from poor performance and slower convergence when training data at clients are not independent and identically distributed.
Here we consider a new complementary approach to mitigating this performance degradation by allowing the server to perform auxiliary learning from a small dataset.
arXiv Detail & Related papers (2022-10-06T00:27:16Z) - FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling
and Correction [48.85303253333453]
Federated learning (FL) allows multiple clients to collectively train a high-performance global model without sharing their private data.
We propose a novel federated learning algorithm with local drift decoupling and correction (FedDC)
Our FedDC only introduces lightweight modifications in the local training phase, in which each client utilizes an auxiliary local drift variable to track the gap between the local model parameter and the global model parameters.
Experiment results and analysis demonstrate that FedDC yields expediting convergence and better performance on various image classification tasks.
arXiv Detail & Related papers (2022-03-22T14:06:26Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Aggregation Delayed Federated Learning [20.973999078271483]
Federated learning is a distributed machine learning paradigm where multiple data owners (clients) collaboratively train one machine learning model while keeping data on their own devices.
Studies have found performance reduction with standard federated algorithms, such as FedAvg, on non-IID data.
Many existing works on handling non-IID data adopt the same aggregation framework as FedAvg and focus on improving model updates either on the server side or on clients.
In this work, we tackle this challenge by introducing redistribution rounds that delay the aggregation. We perform experiments on multiple tasks and show that the proposed framework significantly improves the performance on non-IID
arXiv Detail & Related papers (2021-08-17T04:06:10Z) - Decentralized Federated Learning via Mutual Knowledge Transfer [37.5341683644709]
Decentralized federated learning (DFL) is a problem in the Internet of things (IoT) systems.
We propose a mutual knowledge transfer (Def-KT) algorithm where local clients fuse models by transferring their learnt knowledge to each other.
Our experiments on the MNIST, Fashion-MNIST, and CIFAR10 datasets reveal datasets that the proposed Def-KT algorithm significantly outperforms the baseline DFL methods.
arXiv Detail & Related papers (2020-12-24T01:43:53Z) - Federated Residual Learning [53.77128418049985]
We study a new form of federated learning where the clients train personalized local models and make predictions jointly with the server-side shared model.
Using this new federated learning framework, the complexity of the central shared model can be minimized while still gaining all the performance benefits that joint training provides.
arXiv Detail & Related papers (2020-03-28T19:55:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.