3D Spatial Recognition without Spatially Labeled 3D
- URL: http://arxiv.org/abs/2105.06461v1
- Date: Thu, 13 May 2021 17:58:07 GMT
- Title: 3D Spatial Recognition without Spatially Labeled 3D
- Authors: Zhongzheng Ren, Ishan Misra, Alexander G. Schwing, and Rohit Girdhar
- Abstract summary: We introduce WyPR, a Weakly-supervised framework for Point cloud Recognition.
We show that WyPR can detect and segment objects in point cloud data without access to any spatial labels at training time.
- Score: 127.6254240158249
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce WyPR, a Weakly-supervised framework for Point cloud Recognition,
requiring only scene-level class tags as supervision. WyPR jointly addresses
three core 3D recognition tasks: point-level semantic segmentation, 3D proposal
generation, and 3D object detection, coupling their predictions through self
and cross-task consistency losses. We show that in conjunction with standard
multiple-instance learning objectives, WyPR can detect and segment objects in
point cloud data without access to any spatial labels at training time. We
demonstrate its efficacy using the ScanNet and S3DIS datasets, outperforming
prior state of the art on weakly-supervised segmentation by more than 6% mIoU.
In addition, we set up the first benchmark for weakly-supervised 3D object
detection on both datasets, where WyPR outperforms standard approaches and
establishes strong baselines for future work.
Related papers
- Point-DETR3D: Leveraging Imagery Data with Spatial Point Prior for Weakly Semi-supervised 3D Object Detection [32.86369670395974]
We introduce Point-DETR3D, a teacher-student framework for weakly semi-supervised 3D detection.
With only 5% of labeled data, Point-DETR3D achieves over 90% performance of its fully supervised counterpart.
arXiv Detail & Related papers (2024-03-22T16:11:29Z) - PatchContrast: Self-Supervised Pre-training for 3D Object Detection [14.603858163158625]
We introduce PatchContrast, a novel self-supervised point cloud pre-training framework for 3D object detection.
We show that our method outperforms existing state-of-the-art models on three commonly-used 3D detection datasets.
arXiv Detail & Related papers (2023-08-14T07:45:54Z) - SL3D: Self-supervised-Self-labeled 3D Recognition [89.19932178712065]
We propose a Self-supervised-Self-Labeled 3D Recognition (SL3D) framework.
SL3D simultaneously solves two coupled objectives, i.e., clustering and learning feature representation.
It can be applied to solve different 3D recognition tasks, including classification, object detection, and semantic segmentation.
arXiv Detail & Related papers (2022-10-30T11:08:25Z) - SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object
Detection [78.90102636266276]
We propose a novel set abstraction method named Semantics-Augmented Set Abstraction (SASA)
Based on the estimated point-wise foreground scores, we then propose a semantics-guided point sampling algorithm to help retain more important foreground points during down-sampling.
In practice, SASA shows to be effective in identifying valuable points related to foreground objects and improving feature learning for point-based 3D detection.
arXiv Detail & Related papers (2022-01-06T08:54:47Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
We present a new domain adaptive self-training pipeline, named ST3D, for unsupervised domain adaptation on 3D object detection from point clouds.
Our ST3D achieves state-of-the-art performance on all evaluated datasets and even surpasses fully supervised results on KITTI 3D object detection benchmark.
arXiv Detail & Related papers (2021-03-09T10:51:24Z) - Learning Monocular 3D Vehicle Detection without 3D Bounding Box Labels [0.09558392439655011]
Training of 3D object detectors requires datasets with 3D bounding box labels for supervision that have to be generated by hand-labeling.
We propose a network architecture and training procedure for learning monocular 3D object detection without 3D bounding box labels.
We evaluate the proposed algorithm on the real-world KITTI dataset and achieve promising performance in comparison to state-of-the-art methods requiring 3D bounding box labels for training.
arXiv Detail & Related papers (2020-10-07T16:24:46Z) - Improving Point Cloud Semantic Segmentation by Learning 3D Object
Detection [102.62963605429508]
Point cloud semantic segmentation plays an essential role in autonomous driving.
Current 3D semantic segmentation networks focus on convolutional architectures that perform great for well represented classes.
We propose a novel Aware 3D Semantic Detection (DASS) framework that explicitly leverages localization features from an auxiliary 3D object detection task.
arXiv Detail & Related papers (2020-09-22T14:17:40Z) - SESS: Self-Ensembling Semi-Supervised 3D Object Detection [138.80825169240302]
We propose SESS, a self-ensembling semi-supervised 3D object detection framework. Specifically, we design a thorough perturbation scheme to enhance generalization of the network on unlabeled and new unseen data.
Our SESS achieves competitive performance compared to the state-of-the-art fully-supervised method by using only 50% labeled data.
arXiv Detail & Related papers (2019-12-26T08:48:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.