Dynamic View Synthesis from Dynamic Monocular Video
- URL: http://arxiv.org/abs/2105.06468v1
- Date: Thu, 13 May 2021 17:59:50 GMT
- Title: Dynamic View Synthesis from Dynamic Monocular Video
- Authors: Chen Gao, Ayush Saraf, Johannes Kopf, Jia-Bin Huang
- Abstract summary: We present an algorithm for generating views at arbitrary viewpoints and any input time step given a monocular video of a dynamic scene.
We show extensive quantitative and qualitative results of dynamic view synthesis from casually captured videos.
- Score: 69.80425724448344
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an algorithm for generating novel views at arbitrary viewpoints
and any input time step given a monocular video of a dynamic scene. Our work
builds upon recent advances in neural implicit representation and uses
continuous and differentiable functions for modeling the time-varying structure
and the appearance of the scene. We jointly train a time-invariant static NeRF
and a time-varying dynamic NeRF, and learn how to blend the results in an
unsupervised manner. However, learning this implicit function from a single
video is highly ill-posed (with infinitely many solutions that match the input
video). To resolve the ambiguity, we introduce regularization losses to
encourage a more physically plausible solution. We show extensive quantitative
and qualitative results of dynamic view synthesis from casually captured
videos.
Related papers
- D-NPC: Dynamic Neural Point Clouds for Non-Rigid View Synthesis from Monocular Video [53.83936023443193]
This paper contributes to the field by introducing a new synthesis method for dynamic novel view from monocular video, such as smartphone captures.
Our approach represents the as a $textitdynamic neural point cloud$, an implicit time-conditioned point cloud that encodes local geometry and appearance in separate hash-encoded neural feature grids.
arXiv Detail & Related papers (2024-06-14T14:35:44Z) - Diffusion Priors for Dynamic View Synthesis from Monocular Videos [59.42406064983643]
Dynamic novel view synthesis aims to capture the temporal evolution of visual content within videos.
We first finetune a pretrained RGB-D diffusion model on the video frames using a customization technique.
We distill the knowledge from the finetuned model to a 4D representations encompassing both dynamic and static Neural Radiance Fields.
arXiv Detail & Related papers (2024-01-10T23:26:41Z) - CTNeRF: Cross-Time Transformer for Dynamic Neural Radiance Field from Monocular Video [25.551944406980297]
We propose a novel approach to generate high-quality novel views from monocular videos of complex and dynamic scenes.
We introduce a module that operates in both the time and frequency domains to aggregate the features of object motion.
Our experiments demonstrate significant improvements over state-of-the-art methods on dynamic scene datasets.
arXiv Detail & Related papers (2024-01-10T00:40:05Z) - Fast View Synthesis of Casual Videos with Soup-of-Planes [24.35962788109883]
Novel view synthesis from an in-the-wild video is difficult due to challenges like scene dynamics and lack of parallax.
This paper revisits explicit video representations to synthesize high-quality novel views from a monocular video efficiently.
Our method can render high-quality novel views from an in-the-wild video with comparable quality to state-of-the-art methods while being 100x faster in training and enabling real-time rendering.
arXiv Detail & Related papers (2023-12-04T18:55:48Z) - MoCo-Flow: Neural Motion Consensus Flow for Dynamic Humans in Stationary
Monocular Cameras [98.40768911788854]
We introduce MoCo-Flow, a representation that models the dynamic scene using a 4D continuous time-variant function.
At the heart of our work lies a novel optimization formulation, which is constrained by a motion consensus regularization on the motion flow.
We extensively evaluate MoCo-Flow on several datasets that contain human motions of varying complexity.
arXiv Detail & Related papers (2021-06-08T16:03:50Z) - Non-Rigid Neural Radiance Fields: Reconstruction and Novel View
Synthesis of a Dynamic Scene From Monocular Video [76.19076002661157]
Non-Rigid Neural Radiance Fields (NR-NeRF) is a reconstruction and novel view synthesis approach for general non-rigid dynamic scenes.
We show that even a single consumer-grade camera is sufficient to synthesize sophisticated renderings of a dynamic scene from novel virtual camera views.
arXiv Detail & Related papers (2020-12-22T18:46:12Z) - Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes [70.76742458931935]
We introduce a new representation that models the dynamic scene as a time-variant continuous function of appearance, geometry, and 3D scene motion.
Our representation is optimized through a neural network to fit the observed input views.
We show that our representation can be used for complex dynamic scenes, including thin structures, view-dependent effects, and natural degrees of motion.
arXiv Detail & Related papers (2020-11-26T01:23:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.