Monash Time Series Forecasting Archive
- URL: http://arxiv.org/abs/2105.06643v1
- Date: Fri, 14 May 2021 04:49:58 GMT
- Title: Monash Time Series Forecasting Archive
- Authors: Rakshitha Godahewa, Christoph Bergmeir, Geoffrey I. Webb, Rob J.
Hyndman, Pablo Montero-Manso
- Abstract summary: We present a comprehensive time series forecasting archive containing 20 publicly available time series datasets from varied domains.
We characterise the datasets, and identify similarities and differences among them, by conducting a feature analysis.
We present the performance of a set of standard baseline forecasting methods over all datasets across eight error metrics.
- Score: 6.0617755214437405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many businesses and industries nowadays rely on large quantities of time
series data making time series forecasting an important research area. Global
forecasting models that are trained across sets of time series have shown a
huge potential in providing accurate forecasts compared with the traditional
univariate forecasting models that work on isolated series. However, there are
currently no comprehensive time series archives for forecasting that contain
datasets of time series from similar sources available for the research
community to evaluate the performance of new global forecasting algorithms over
a wide variety of datasets. In this paper, we present such a comprehensive time
series forecasting archive containing 20 publicly available time series
datasets from varied domains, with different characteristics in terms of
frequency, series lengths, and inclusion of missing values. We also
characterise the datasets, and identify similarities and differences among
them, by conducting a feature analysis. Furthermore, we present the performance
of a set of standard baseline forecasting methods over all datasets across
eight error metrics, for the benefit of researchers using the archive to
benchmark their forecasting algorithms.
Related papers
- GIFT-Eval: A Benchmark For General Time Series Forecasting Model Evaluation [90.53485251837235]
Time series foundation models excel in zero-shot forecasting, handling diverse tasks without explicit training.
GIFT-Eval is a pioneering benchmark aimed at promoting evaluation across diverse datasets.
GIFT-Eval encompasses 23 datasets over 144,000 time series and 177 million data points.
arXiv Detail & Related papers (2024-10-14T11:29:38Z) - Can time series forecasting be automated? A benchmark and analysis [4.19475889117731]
Time series forecasting plays a pivotal role across various domains such as finance, healthcare, and weather.
The task of selecting the most suitable forecasting method for a given dataset is a complex task due to the diversity of data patterns and characteristics.
This research proposes a comprehensive benchmark for evaluating and ranking time series forecasting methods across a wide range of datasets.
arXiv Detail & Related papers (2024-07-23T12:54:06Z) - Deep Time Series Models: A Comprehensive Survey and Benchmark [74.28364194333447]
Time series data is of great significance in real-world scenarios.
Recent years have witnessed remarkable breakthroughs in the time series community.
We release Time Series Library (TSLib) as a fair benchmark of deep time series models for diverse analysis tasks.
arXiv Detail & Related papers (2024-07-18T08:31:55Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - Few-Shot Forecasting of Time-Series with Heterogeneous Channels [4.635820333232681]
We develop a model composed of permutation-invariant deep set-blocks which incorporate a temporal embedding.
We show through experiments that our model provides a good generalization, outperforming baselines carried over from simpler scenarios.
arXiv Detail & Related papers (2022-04-07T14:02:15Z) - Monitoring Time Series With Missing Values: a Deep Probabilistic
Approach [1.90365714903665]
We introduce a new architecture for time series monitoring based on combination of state-of-the-art methods of forecasting in high-dimensional time series with full probabilistic handling of uncertainty.
We demonstrate advantage of the architecture for time series forecasting and novelty detection, in particular with partially missing data, and empirically evaluate and compare the architecture to state-of-the-art approaches on a real-world data set.
arXiv Detail & Related papers (2022-03-09T17:53:47Z) - Optimal Latent Space Forecasting for Large Collections of Short Time
Series Using Temporal Matrix Factorization [0.0]
It is a common practice to evaluate multiple methods and choose one of these methods or an ensemble for producing the best forecasts.
We propose a framework for forecasting short high-dimensional time series data by combining low-rank temporal matrix factorization and optimal model selection on latent time series.
arXiv Detail & Related papers (2021-12-15T11:39:21Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
We propose a three-stage framework for forecasting high-dimensional time-series data.
Our framework is highly general, allowing for any time-series forecasting and clustering method to be used in each step.
When instantiated with simple linear autoregressive models, we are able to achieve state-of-the-art results on several benchmark datasets.
arXiv Detail & Related papers (2021-10-26T20:41:19Z) - Instance-wise Graph-based Framework for Multivariate Time Series
Forecasting [69.38716332931986]
We propose a simple yet efficient instance-wise graph-based framework to utilize the inter-dependencies of different variables at different time stamps.
The key idea of our framework is aggregating information from the historical time series of different variables to the current time series that we need to forecast.
arXiv Detail & Related papers (2021-09-14T07:38:35Z) - Deep Autoregressive Models with Spectral Attention [74.08846528440024]
We propose a forecasting architecture that combines deep autoregressive models with a Spectral Attention (SA) module.
By characterizing in the spectral domain the embedding of the time series as occurrences of a random process, our method can identify global trends and seasonality patterns.
Two spectral attention models, global and local to the time series, integrate this information within the forecast and perform spectral filtering to remove time series's noise.
arXiv Detail & Related papers (2021-07-13T11:08:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.