Waste detection in Pomerania: non-profit project for detecting waste in
environment
- URL: http://arxiv.org/abs/2105.06808v1
- Date: Wed, 12 May 2021 09:33:22 GMT
- Title: Waste detection in Pomerania: non-profit project for detecting waste in
environment
- Authors: Sylwia Majchrowska, Agnieszka Miko{\l}ajczyk, Maria Ferlin, Zuzanna
Klawikowska, Marta A. Plantykow, Arkadiusz Kwasigroch, Karol Majek
- Abstract summary: Litter is classified into seven categories: bio, glass, metal and plastic, non-recyclable, other, paper and unknown.
Our approach achieves up to 70% of average precision in waste detection and around 75% of classification accuracy on the test dataset.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Waste pollution is one of the most significant environmental issues in the
modern world. The importance of recycling is well known, either for economic or
ecological reasons, and the industry demands high efficiency. Our team
conducted comprehensive research on Artificial Intelligence usage in waste
detection and classification to fight the world's waste pollution problem. As a
result an open-source framework that enables the detection and classification
of litter was developed. The final pipeline consists of two neural networks:
one that detects litter and a second responsible for litter classification.
Waste is classified into seven categories: bio, glass, metal and plastic,
non-recyclable, other, paper and unknown. Our approach achieves up to 70% of
average precision in waste detection and around 75% of classification accuracy
on the test dataset. The code used in the studies is publicly available online.
Related papers
- SpectralWaste Dataset: Multimodal Data for Waste Sorting Automation [46.178512739789426]
We present SpectralWaste, the first dataset collected from an operational plastic waste sorting facility.
This dataset contains labels for several categories of objects that commonly appear in sorting plants.
We propose a pipeline employing different object segmentation architectures and evaluate the alternatives on our dataset.
arXiv Detail & Related papers (2024-03-26T18:39:38Z) - MWaste: A Deep Learning Approach to Manage Household Waste [0.0]
MWaste is a mobile application that uses computer vision and deep learning techniques to classify waste materials as trash, plastic, paper, metal, glass or cardboard.
Its effectiveness was tested on various neural network architectures and real-world images, achieving an average precision of 92% on the test set.
arXiv Detail & Related papers (2023-04-02T16:56:49Z) - VisDA 2022 Challenge: Domain Adaptation for Industrial Waste Sorting [61.52419223232737]
In industrial waste sorting, one of the biggest challenges is the extreme diversity of the input stream.
We present the VisDA 2022 Challenge on Domain Adaptation for Industrial Waste Sorting.
arXiv Detail & Related papers (2023-03-26T21:38:38Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
Millions of hectares of tropical forests are lost every year due to deforestation or degradation.
Monitoring and deforestation detection programs are in use, in addition to public policies for the prevention and punishment of criminals.
This paper proposes the use of pattern classifiers based on neuroevolution technique (NEAT) in tropical forest deforestation detection tasks.
arXiv Detail & Related papers (2022-08-23T16:04:12Z) - A Method for Waste Segregation using Convolutional Neural Networks [0.0]
In this paper, we try to use deep learning algorithms to help solve this problem of waste classification.
Our proposed model achieves an accuracy of 94.9%.
arXiv Detail & Related papers (2022-02-23T14:32:10Z) - Classification of PS and ABS Black Plastics for WEEE Recycling
Applications [63.942632088208505]
This work is aimed at creating a system that can classify different types of plastics by using picture analysis, in particular, black plastics of the type Polystyrene (PS) and Acrylonitrile Butadiene Styrene (ABS)
A Convolutional Neural Network has been tested and retrained, obtaining a validation accuracy of 95%.
Using a separate test set, average accuracy goes down to 86.6%, but a further look at the results shows that the ABS type is correctly classified 100% of the time, so it is the PS type that accumulates all the errors.
arXiv Detail & Related papers (2021-10-20T12:47:18Z) - ZeroWaste Dataset: Towards Automated Waste Recycling [51.053682077915546]
We present the first in-the-wild industrial-grade waste detection and segmentation dataset, ZeroWaste.
This dataset contains over1800fully segmented video frames collected from a real waste sorting plant.
We show that state-of-the-art segmentation methods struggle to correctly detect and classify target objects.
arXiv Detail & Related papers (2021-06-04T22:17:09Z) - DeepWaste: Applying Deep Learning to Waste Classification for a
Sustainable Planet [0.0]
Current attempts to reduce erroneous waste disposal are expensive, inaccurate, and confusing.
We propose DeepWaste, a mobile app that utilizes highly optimized deep learning techniques to provide users instantaneous waste classification into trash, recycling, and compost.
Our best model, a deep learning residual neural network with 50 layers, achieves an average precision of 0.881 on the test set.
arXiv Detail & Related papers (2021-01-15T04:06:25Z) - STCNet: Spatio-Temporal Cross Network for Industrial Smoke Detection [52.648906951532155]
We propose a novel Spatio-Temporal Cross Network (STCNet) to recognize industrial smoke emissions.
The proposed STCNet involves a spatial to extract texture features and a temporal pathway to capture smoke motion information.
We show that our STCNet achieves clear improvements on the challenging RISE industrial smoke detection dataset against the best competitors by 6.2%.
arXiv Detail & Related papers (2020-11-10T02:28:47Z) - Comparative Analysis of Multiple Deep CNN Models for Waste
Classification [0.0]
The project tested well known Deep Learning Network architectures for waste classification with dataset combined from own endeavors and Trash Net.
The hardware built in the form of dustbin is used to segregate those wastes into different compartments.
arXiv Detail & Related papers (2020-04-05T11:50:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.