Bayesian reconstruction of memories stored in neural networks from their
connectivity
- URL: http://arxiv.org/abs/2105.07416v1
- Date: Sun, 16 May 2021 12:05:10 GMT
- Title: Bayesian reconstruction of memories stored in neural networks from their
connectivity
- Authors: Sebastian Goldt, Florent Krzakala, Lenka Zdeborov\'a, Nicolas Brunel
- Abstract summary: We provide a practical algorithm for reconstructing stored patterns from synaptic connectivity.
We study its performance on three different models and explore the limitations of reconstructing stored patterns from synaptic connectivity.
- Score: 25.94639282590696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of comprehensive synaptic wiring diagrams of large neural circuits
has created the field of connectomics and given rise to a number of open
research questions. One such question is whether it is possible to reconstruct
the information stored in a recurrent network of neurons, given its synaptic
connectivity matrix. Here, we address this question by determining when solving
such an inference problem is theoretically possible in specific attractor
network models and by providing a practical algorithm to do so. The algorithm
builds on ideas from statistical physics to perform approximate Bayesian
inference and is amenable to exact analysis. We study its performance on three
different models and explore the limitations of reconstructing stored patterns
from synaptic connectivity.
Related papers
- Relational Composition in Neural Networks: A Survey and Call to Action [54.47858085003077]
Many neural nets appear to represent data as linear combinations of "feature vectors"
We argue that this success is incomplete without an understanding of relational composition.
arXiv Detail & Related papers (2024-07-19T20:50:57Z) - Demolition and Reinforcement of Memories in Spin-Glass-like Neural
Networks [0.0]
The aim of this thesis is to understand the effectiveness of Unlearning in both associative memory models and generative models.
The selection of structured data enables an associative memory model to retrieve concepts as attractors of a neural dynamics with considerable basins of attraction.
A novel regularization technique for Boltzmann Machines is presented, proving to outperform previously developed methods in learning hidden probability distributions from data-sets.
arXiv Detail & Related papers (2024-03-04T23:12:42Z) - Decoding Neuronal Networks: A Reservoir Computing Approach for
Predicting Connectivity and Functionality [0.0]
Our model deciphers data obtained from electrophysiological measurements of neuronal cultures.
Notably, our model outperforms common methods like Cross-Correlation and Transfer-Entropy in predicting the network's connectivity map.
arXiv Detail & Related papers (2023-11-06T14:28:11Z) - Memorization with neural nets: going beyond the worst case [5.662924503089369]
In practice, deep neural networks are often able to easily interpolate their training data.
For real-world data, however, one intuitively expects the presence of a benign structure so that already occurs at a smaller network size than suggested by memorization capacity.
We introduce a simple randomized algorithm that, given a fixed finite dataset with two classes, with high probability constructs an interpolating three-layer neural network in time.
arXiv Detail & Related papers (2023-09-30T10:06:05Z) - Unsupervised Learning of Invariance Transformations [105.54048699217668]
We develop an algorithmic framework for finding approximate graph automorphisms.
We discuss how this framework can be used to find approximate automorphisms in weighted graphs in general.
arXiv Detail & Related papers (2023-07-24T17:03:28Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Quasi-orthogonality and intrinsic dimensions as measures of learning and
generalisation [55.80128181112308]
We show that dimensionality and quasi-orthogonality of neural networks' feature space may jointly serve as network's performance discriminants.
Our findings suggest important relationships between the networks' final performance and properties of their randomly initialised feature spaces.
arXiv Detail & Related papers (2022-03-30T21:47:32Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Online neural connectivity estimation with ensemble stimulation [5.156484100374058]
We propose a method based on noisy group testing that drastically increases the efficiency of this process in sparse networks.
We show that it is possible to recover binarized network connectivity with a number of tests that grows only logarithmically with population size.
We also demonstrate the feasibility of inferring connectivity for networks of up to tens of thousands of neurons online.
arXiv Detail & Related papers (2020-07-27T23:47:03Z) - Neural Rule Ensembles: Encoding Sparse Feature Interactions into Neural
Networks [3.7277730514654555]
We use decision trees to capture relevant features and their interactions and define a mapping to encode extracted relationships into a neural network.
At the same time through feature selection it enables learning of compact representations compared to state of the art tree-based approaches.
arXiv Detail & Related papers (2020-02-11T11:22:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.