OntoEA: Ontology-guided Entity Alignment via Joint Knowledge Graph
Embedding
- URL: http://arxiv.org/abs/2105.07688v1
- Date: Mon, 17 May 2021 09:18:56 GMT
- Title: OntoEA: Ontology-guided Entity Alignment via Joint Knowledge Graph
Embedding
- Authors: Yuejia Xiang, Ziheng Zhang, Jiaoyan Chen, Xi Chen, Zhenxi Lin, Yefeng
Zheng
- Abstract summary: We propose an ontological-guided entity alignment method named OntoEA.
Experiments on seven public and industrial benchmarks have demonstrated the state-of-the-art performance of OntoEA.
- Score: 22.47525303095817
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semantic embedding has been widely investigated for aligning knowledge graph
(KG) entities. Current methods have explored and utilized the graph structure,
the entity names and attributes, but ignore the ontology (or ontological
schema) which contains critical meta information such as classes and their
membership relationships with entities. In this paper, we propose an
ontology-guided entity alignment method named OntoEA, where both KGs and their
ontologies are jointly embedded, and the class hierarchy and the class
disjointness are utilized to avoid false mappings. Extensive experiments on
seven public and industrial benchmarks have demonstrated the state-of-the-art
performance of OntoEA and the effectiveness of the ontologies.
Related papers
- Embedding Method for Knowledge Graph with Densely Defined Ontology [0.0]
This study proposes a KGE model, TransU, designed for knowledge graphs with well-defined models that incorporate relationships between properties.
We present experimental results using a standard dataset and a practical dataset.
arXiv Detail & Related papers (2025-04-02T14:43:47Z) - Attr-Int: A Simple and Effective Entity Alignment Framework for Heterogeneous Knowledge Graphs [9.725601872648566]
Entity alignment (EA) refers to linking entities in different knowledge graphs (KGs)
In this paper, we investigate and tackle the problem of entity alignment between heterogeneous KGs.
We propose a simple and effective entity alignment framework called Attr-Int, in which innovative attribute information interaction methods can be seamlessly integrated with any embedding encoder.
arXiv Detail & Related papers (2024-10-17T10:16:56Z) - DERA: Dense Entity Retrieval for Entity Alignment in Knowledge Graphs [3.500936203815729]
We propose a dense entity retrieval framework for Entity Alignment (EA)
We leverage language models to uniformly encode various features of entities and facilitate nearest entity search across Knowledge Graphs (KGs)
Our approach achieves state-of-the-art performance compared to existing EA methods.
arXiv Detail & Related papers (2024-08-02T10:12:42Z) - Nested Named Entity Recognition from Medical Texts: An Adaptive Shared
Network Architecture with Attentive CRF [53.55504611255664]
We propose a novel method, referred to as ASAC, to solve the dilemma caused by the nested phenomenon.
The proposed method contains two key modules: the adaptive shared (AS) part and the attentive conditional random field (ACRF) module.
Our model could learn better entity representations by capturing the implicit distinctions and relationships between different categories of entities.
arXiv Detail & Related papers (2022-11-09T09:23:56Z) - EventEA: Benchmarking Entity Alignment for Event-centric Knowledge
Graphs [17.27027602556303]
We show that the progress made in the past was due to biased and unchallenging evaluation.
We construct a new dataset with heterogeneous relations and attributes based on event-centric KGs.
As a new approach to this difficult problem, we propose a time-aware literal encoder for entity alignment.
arXiv Detail & Related papers (2022-11-05T05:34:21Z) - Exploiting Global Semantic Similarities in Knowledge Graphs by
Relational Prototype Entities [55.952077365016066]
An empirical observation is that the head and tail entities connected by the same relation often share similar semantic attributes.
We propose a novel approach, which introduces a set of virtual nodes called textittextbfrelational prototype entities.
By enforcing the entities' embeddings close to their associated prototypes' embeddings, our approach can effectively encourage the global semantic similarities of entities.
arXiv Detail & Related papers (2022-06-16T09:25:33Z) - Knowledge-Rich Self-Supervised Entity Linking [58.838404666183656]
Knowledge-RIch Self-Supervision ($tt KRISSBERT$) is a universal entity linker for four million UMLS entities.
Our approach subsumes zero-shot and few-shot methods, and can easily incorporate entity descriptions and gold mention labels if available.
Without using any labeled information, our method produces $tt KRISSBERT$, a universal entity linker for four million UMLS entities.
arXiv Detail & Related papers (2021-12-15T05:05:12Z) - Why Settle for Just One? Extending EL++ Ontology Embeddings with
Many-to-Many Relationships [2.599882743586164]
Knowledge Graph embeddings provide a low-dimensional representation of entities and relations of a Knowledge Graph.
Recent efforts in this direction involve learning embeddings for a Description (logical Logic for a description) named EL++.
We provide a simple and effective solution that allows such methods to consider many-to-many relationships while learning embedding representations.
arXiv Detail & Related papers (2021-10-20T13:23:18Z) - Unsupervised Knowledge Graph Alignment by Probabilistic Reasoning and
Semantic Embedding [22.123001954919893]
We propose an iterative framework named PRASE which is based on probabilistic reasoning and semantic embedding.
The PRASE framework is compatible with different embedding-based models, and our experiments on multiple datasets have demonstrated its state-of-the-art performance.
arXiv Detail & Related papers (2021-05-12T11:27:46Z) - Neural Production Systems [90.75211413357577]
Visual environments are structured, consisting of distinct objects or entities.
To partition images into entities, deep-learning researchers have proposed structural inductive biases.
We take inspiration from cognitive science and resurrect a classic approach, which consists of a set of rule templates.
This architecture achieves a flexible, dynamic flow of control and serves to factorize entity-specific and rule-based information.
arXiv Detail & Related papers (2021-03-02T18:53:20Z) - Hierarchical Image Classification using Entailment Cone Embeddings [68.82490011036263]
We first inject label-hierarchy knowledge into an arbitrary CNN-based classifier.
We empirically show that availability of such external semantic information in conjunction with the visual semantics from images boosts overall performance.
arXiv Detail & Related papers (2020-04-02T10:22:02Z) - Relational Message Passing for Knowledge Graph Completion [78.47976646383222]
We propose a relational message passing method for knowledge graph completion.
It passes relational messages among edges iteratively to aggregate neighborhood information.
Results show our method outperforms stateof-the-art knowledge completion methods by a large margin.
arXiv Detail & Related papers (2020-02-17T03:33:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.