Conscious AI
- URL: http://arxiv.org/abs/2105.07879v1
- Date: Wed, 12 May 2021 15:53:44 GMT
- Title: Conscious AI
- Authors: Hadi Esmaeilzadeh and Reza Vaezi
- Abstract summary: Recent advances in artificial intelligence have achieved human-scale speed and accuracy for classification tasks.
Current systems do not need to be conscious to recognize patterns and classify them.
For AI to progress to more complicated tasks requiring intuition and empathy, it must develop capabilities such as metathinking, creativity, and empathy akin to human self-awareness or consciousness.
- Score: 6.061244362532694
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in artificial intelligence (AI) have achieved human-scale
speed and accuracy for classification tasks. In turn, these capabilities have
made AI a viable replacement for many human activities that at their core
involve classification, such as basic mechanical and analytical tasks in
low-level service jobs. Current systems do not need to be conscious to
recognize patterns and classify them. However, for AI to progress to more
complicated tasks requiring intuition and empathy, it must develop capabilities
such as metathinking, creativity, and empathy akin to human self-awareness or
consciousness. We contend that such a paradigm shift is possible only through a
fundamental shift in the state of artificial intelligence toward consciousness,
a shift similar to what took place for humans through the process of natural
selection and evolution. As such, this paper aims to theoretically explore the
requirements for the emergence of consciousness in AI. It also provides a
principled understanding of how conscious AI can be detected and how it might
be manifested in contrast to the dominant paradigm that seeks to ultimately
create machines that are linguistically indistinguishable from humans.
Related papers
- Aligning Generalisation Between Humans and Machines [74.120848518198]
Recent advances in AI have resulted in technology that can support humans in scientific discovery and decision support but may also disrupt democracies and target individuals.
The responsible use of AI increasingly shows the need for human-AI teaming.
A crucial yet often overlooked aspect of these interactions is the different ways in which humans and machines generalise.
arXiv Detail & Related papers (2024-11-23T18:36:07Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Is artificial consciousness achievable? Lessons from the human brain [0.0]
We analyse the question of developing artificial consciousness from an evolutionary perspective.
We take the evolution of the human brain and its relation with consciousness as a reference model.
We propose to clearly specify what is common and what differs in AI conscious processing from full human conscious experience.
arXiv Detail & Related papers (2024-04-18T12:59:44Z) - Advancing Explainable AI Toward Human-Like Intelligence: Forging the
Path to Artificial Brain [0.7770029179741429]
The intersection of Artificial Intelligence (AI) and neuroscience in Explainable AI (XAI) is pivotal for enhancing transparency and interpretability in complex decision-making processes.
This paper explores the evolution of XAI methodologies, ranging from feature-based to human-centric approaches.
The challenges in achieving explainability in generative models, ensuring responsible AI practices, and addressing ethical implications are discussed.
arXiv Detail & Related papers (2024-02-07T14:09:11Z) - On the Emergence of Symmetrical Reality [51.21203247240322]
We introduce the symmetrical reality framework, which offers a unified representation encompassing various forms of physical-virtual amalgamations.
We propose an instance of an AI-driven active assistance service that illustrates the potential applications of symmetrical reality.
arXiv Detail & Related papers (2024-01-26T16:09:39Z) - Advancing Perception in Artificial Intelligence through Principles of
Cognitive Science [6.637438611344584]
We focus on the cognitive functions of perception, which is the process of taking signals from one's surroundings as input, and processing them to understand the environment.
We present a collection of methods in AI for researchers to build AI systems inspired by cognitive science.
arXiv Detail & Related papers (2023-10-13T01:21:55Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
We focus on the two concepts of world models and predictive coding.
In neuroscience, predictive coding proposes that the brain continuously predicts its inputs and adapts to model its own dynamics and control behavior in its environment.
arXiv Detail & Related papers (2023-01-14T06:38:14Z) - The problem with AI consciousness: A neurogenetic case against synthetic
sentience [0.0]
The paper argues against the plausibility of sentient AI based on the theory of neurogenetic structuralism.
It claims that the physiology of biological neurons and their structural organization into complex brains are necessary prerequisites for true consciousness to emerge.
arXiv Detail & Related papers (2022-12-07T14:46:38Z) - Inductive Biases for Deep Learning of Higher-Level Cognition [108.89281493851358]
A fascinating hypothesis is that human and animal intelligence could be explained by a few principles.
This work considers a larger list, focusing on those which concern mostly higher-level and sequential conscious processing.
The objective of clarifying these particular principles is that they could potentially help us build AI systems benefiting from humans' abilities.
arXiv Detail & Related papers (2020-11-30T18:29:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.