Finding an Unsupervised Image Segmenter in Each of Your Deep Generative
Models
- URL: http://arxiv.org/abs/2105.08127v1
- Date: Mon, 17 May 2021 19:34:24 GMT
- Title: Finding an Unsupervised Image Segmenter in Each of Your Deep Generative
Models
- Authors: Luke Melas-Kyriazi and Christian Rupprecht and Iro Laina and Andrea
Vedaldi
- Abstract summary: We develop an automatic procedure for finding directions that lead to foreground-background image separation.
We use these directions to train an image segmentation model without human supervision.
- Score: 92.92095626286223
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent research has shown that numerous human-interpretable directions exist
in the latent space of GANs. In this paper, we develop an automatic procedure
for finding directions that lead to foreground-background image separation, and
we use these directions to train an image segmentation model without human
supervision. Our method is generator-agnostic, producing strong segmentation
results with a wide range of different GAN architectures. Furthermore, by
leveraging GANs pretrained on large datasets such as ImageNet, we are able to
segment images from a range of domains without further training or finetuning.
Evaluating our method on image segmentation benchmarks, we compare favorably to
prior work while using neither human supervision nor access to the training
data. Broadly, our results demonstrate that automatically extracting
foreground-background structure from pretrained deep generative models can
serve as a remarkably effective substitute for human supervision.
Related papers
- Self-guided Few-shot Semantic Segmentation for Remote Sensing Imagery
Based on Large Vision Models [14.292149307183967]
This research introduces a structured framework designed for the automation of few-shot semantic segmentation.
It utilizes the SAM model and facilitates a more efficient generation of semantically discernible segmentation outcomes.
Central to our methodology is a novel automatic prompt learning approach, leveraging prior guided masks to produce coarse pixel-wise prompts for SAM.
arXiv Detail & Related papers (2023-11-22T07:07:55Z) - Domain Adaptive and Generalizable Network Architectures and Training
Strategies for Semantic Image Segmentation [108.33885637197614]
Unsupervised domain adaptation (UDA) and domain generalization (DG) enable machine learning models trained on a source domain to perform well on unlabeled or unseen target domains.
We propose HRDA, a multi-resolution framework for UDA&DG, that combines the strengths of small high-resolution crops to preserve fine segmentation details and large low-resolution crops to capture long-range context dependencies with a learned scale attention.
arXiv Detail & Related papers (2023-04-26T15:18:45Z) - Denoising Diffusion Probabilistic Models for Generation of Realistic
Fully-Annotated Microscopy Image Data Sets [1.07539359851877]
In this study, we demonstrate that diffusion models can effectively generate fully-annotated microscopy image data sets.
The proposed pipeline helps to reduce the reliance on manual annotations when training deep learning-based segmentation approaches.
arXiv Detail & Related papers (2023-01-02T14:17:08Z) - Self-supervised Human Detection and Segmentation via Multi-view
Consensus [116.92405645348185]
We propose a multi-camera framework in which geometric constraints are embedded in the form of multi-view consistency during training.
We show that our approach outperforms state-of-the-art self-supervised person detection and segmentation techniques on images that visually depart from those of standard benchmarks.
arXiv Detail & Related papers (2020-12-09T15:47:21Z) - Unsupervised Discovery of Disentangled Manifolds in GANs [74.24771216154105]
Interpretable generation process is beneficial to various image editing applications.
We propose a framework to discover interpretable directions in the latent space given arbitrary pre-trained generative adversarial networks.
arXiv Detail & Related papers (2020-11-24T02:18:08Z) - Self-supervised Segmentation via Background Inpainting [96.10971980098196]
We introduce a self-supervised detection and segmentation approach that can work with single images captured by a potentially moving camera.
We exploit a self-supervised loss function that we exploit to train a proposal-based segmentation network.
We apply our method to human detection and segmentation in images that visually depart from those of standard benchmarks and outperform existing self-supervised methods.
arXiv Detail & Related papers (2020-11-11T08:34:40Z) - Learning High-Resolution Domain-Specific Representations with a GAN
Generator [5.8720142291102135]
We show that representations learnt by a GAN generator can be easily projected onto semantic segmentation map using a lightweight decoder.
We propose LayerMatch scheme for approximating the representation of a GAN generator that can be used for unsupervised domain-specific pretraining.
We find that the use of LayerMatch-pretrained backbone leads to superior accuracy compared to standard supervised pretraining on ImageNet.
arXiv Detail & Related papers (2020-06-18T11:57:18Z) - Gradient-Induced Co-Saliency Detection [81.54194063218216]
Co-saliency detection (Co-SOD) aims to segment the common salient foreground in a group of relevant images.
In this paper, inspired by human behavior, we propose a gradient-induced co-saliency detection method.
arXiv Detail & Related papers (2020-04-28T08:40:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.