Reinforcement Learning With Sparse-Executing Actions via Sparsity Regularization
- URL: http://arxiv.org/abs/2105.08666v4
- Date: Mon, 22 Jul 2024 03:34:57 GMT
- Title: Reinforcement Learning With Sparse-Executing Actions via Sparsity Regularization
- Authors: Jing-Cheng Pang, Tian Xu, Shengyi Jiang, Yu-Ren Liu, Yang Yu,
- Abstract summary: Reinforcement learning (RL) has demonstrated impressive performance in decision-making tasks like embodied control, autonomous driving and financial trading.
In many decision-making tasks, the agents often encounter the problem of executing actions under limited budgets.
This paper formalizes the problem as a Sparse Action Markov Decision Process (SA-MDP), in which specific actions in the action space can only be executed for a limited time.
We propose a policy optimization algorithm, Action Sparsity REgularization (ASRE), which adaptively handles each action with a distinct preference.
- Score: 15.945378631406024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) has demonstrated impressive performance in decision-making tasks like embodied control, autonomous driving and financial trading. In many decision-making tasks, the agents often encounter the problem of executing actions under limited budgets. However, classic RL methods typically overlook the challenges posed by such sparse-executing actions. They operate under the assumption that all actions can be taken for a unlimited number of times, both in the formulation of the problem and in the development of effective algorithms. To tackle the issue of limited action execution in RL, this paper first formalizes the problem as a Sparse Action Markov Decision Process (SA-MDP), in which specific actions in the action space can only be executed for a limited time. Then, we propose a policy optimization algorithm, Action Sparsity REgularization (ASRE), which adaptively handles each action with a distinct preference. ASRE operates through two steps: First, ASRE evaluates action sparsity by constrained action sampling. Following this, ASRE incorporates the sparsity evaluation into policy learning by way of an action distribution regularization. We provide theoretical identification that validates the convergence of ASRE to a regularized optimal value function. Experiments on tasks with known sparse-executing actions, where classical RL algorithms struggle to train policy efficiently, ASRE effectively constrains the action sampling and outperforms baselines. Moreover, we present that ASRE can generally improve the performance in Atari games, demonstrating its broad applicability.
Related papers
- CoPS: Empowering LLM Agents with Provable Cross-Task Experience Sharing [70.25689961697523]
We propose a generalizable algorithm that enhances sequential reasoning by cross-task experience sharing and selection.
Our work bridges the gap between existing sequential reasoning paradigms and validates the effectiveness of leveraging cross-task experiences.
arXiv Detail & Related papers (2024-10-22T03:59:53Z) - Active Fine-Tuning of Generalist Policies [54.65568433408307]
We propose AMF (Active Multi-task Fine-tuning) to maximize multi-task policy performance under a limited demonstration budget.
We derive performance guarantees for AMF under regularity assumptions and demonstrate its empirical effectiveness in complex and high-dimensional environments.
arXiv Detail & Related papers (2024-10-07T13:26:36Z) - Excluding the Irrelevant: Focusing Reinforcement Learning through Continuous Action Masking [7.590209768166108]
We introduce three continuous action masking methods for mapping the action space to the state-dependent set of relevant actions.
Our methods ensure that only relevant actions are executed, enhancing the predictability of the RL agent and enabling its use in safety-critical applications.
arXiv Detail & Related papers (2024-06-06T02:55:16Z) - Growing Q-Networks: Solving Continuous Control Tasks with Adaptive Control Resolution [51.83951489847344]
In robotics applications, smooth control signals are commonly preferred to reduce system wear and energy efficiency.
In this work, we aim to bridge this performance gap by growing discrete action spaces from coarse to fine control resolution.
Our work indicates that an adaptive control resolution in combination with value decomposition yields simple critic-only algorithms that yield surprisingly strong performance on continuous control tasks.
arXiv Detail & Related papers (2024-04-05T17:58:37Z) - ACE : Off-Policy Actor-Critic with Causality-Aware Entropy Regularization [52.5587113539404]
We introduce a causality-aware entropy term that effectively identifies and prioritizes actions with high potential impacts for efficient exploration.
Our proposed algorithm, ACE: Off-policy Actor-critic with Causality-aware Entropy regularization, demonstrates a substantial performance advantage across 29 diverse continuous control tasks.
arXiv Detail & Related papers (2024-02-22T13:22:06Z) - Generative Modelling of Stochastic Actions with Arbitrary Constraints in
Reinforcement Learning [25.342811509665097]
Many problems in Reinforcement Learning (RL) seek an optimal policy with large discrete multidimensional yet unordered action spaces.
A challenge in this setting is that the underlying action space is categorical (discrete and unordered) and large.
In this work, we address these challenges by applying a (state) conditional normalizing flow to compactly represent the policy.
arXiv Detail & Related papers (2023-11-26T15:57:20Z) - Action Pick-up in Dynamic Action Space Reinforcement Learning [6.15205100319133]
We propose an intelligent Action Pick-up (AP) algorithm to autonomously choose valuable actions that are most likely to boost performance from a set of new actions.
In this paper, we first theoretically analyze and find that a prior optimal policy plays an important role in action pick-up by providing useful knowledge and experience.
We then design two different AP methods: frequency-based global method and state clustering-based local method, based on the prior optimal policy.
arXiv Detail & Related papers (2023-04-03T10:55:16Z) - Addressing Action Oscillations through Learning Policy Inertia [26.171039226334504]
Policy Inertia Controller (PIC) serves as a generic plug-in framework to off-the-shelf DRL algorithms.
We propose Nested Policy Iteration as a general training algorithm for PIC-augmented policy.
We derive a practical DRL algorithm, namely Nested Soft Actor-Critic.
arXiv Detail & Related papers (2021-03-03T09:59:43Z) - Zeroth-Order Supervised Policy Improvement [94.0748002906652]
Policy gradient (PG) algorithms have been widely used in reinforcement learning (RL)
We propose Zeroth-Order Supervised Policy Improvement (ZOSPI)
ZOSPI exploits the estimated value function $Q$ globally while preserving the local exploitation of the PG methods.
arXiv Detail & Related papers (2020-06-11T16:49:23Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
Reinforcement learning (RL) in discrete action space is ubiquitous in real-world applications, but its complexity grows exponentially with the action-space dimension.
We construct a critic to estimate action-value functions, apply it on correlated actions, and combine these critic estimated action values to control the variance of gradient estimation.
These efforts result in a new discrete action on-policy RL algorithm that empirically outperforms related on-policy algorithms relying on variance control techniques.
arXiv Detail & Related papers (2020-02-10T04:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.