A Sequence-to-Set Network for Nested Named Entity Recognition
- URL: http://arxiv.org/abs/2105.08901v1
- Date: Wed, 19 May 2021 03:10:04 GMT
- Title: A Sequence-to-Set Network for Nested Named Entity Recognition
- Authors: Zeqi Tan, Yongliang Shen, Shuai Zhang, Weiming Lu, Yueting Zhuang
- Abstract summary: We propose a novel sequence-to-set neural network for nested NER.
We use a non-autoregressive decoder to predict the final set of entities in one pass.
Experimental results show that our proposed model achieves state-of-the-art on three nested NER corpora.
- Score: 38.05786148160635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Named entity recognition (NER) is a widely studied task in natural language
processing. Recently, a growing number of studies have focused on the nested
NER. The span-based methods, considering the entity recognition as a span
classification task, can deal with nested entities naturally. But they suffer
from the huge search space and the lack of interactions between entities. To
address these issues, we propose a novel sequence-to-set neural network for
nested NER. Instead of specifying candidate spans in advance, we provide a
fixed set of learnable vectors to learn the patterns of the valuable spans. We
utilize a non-autoregressive decoder to predict the final set of entities in
one pass, in which we are able to capture dependencies between entities.
Compared with the sequence-to-sequence method, our model is more suitable for
such unordered recognition task as it is insensitive to the label order. In
addition, we utilize the loss function based on bipartite matching to compute
the overall training loss. Experimental results show that our proposed model
achieves state-of-the-art on three nested NER corpora: ACE 2004, ACE 2005 and
KBP 2017.
Related papers
- S2F-NER: Exploring Sequence-to-Forest Generation for Complex Entity
Recognition [47.714230389689064]
We propose a novel Sequence-to-Forest generation paradigm, S2F-NER, which can directly extract entities in sentence via a Forest decoder.
Specifically, our model generate each path of each tree in forest autoregressively, where the maximum depth of each tree is three.
Based on this novel paradigm, our model can elegantly mitigate the exposure bias problem and keep the simplicity of Seq2Seq.
arXiv Detail & Related papers (2023-10-29T09:09:10Z) - A Boundary Offset Prediction Network for Named Entity Recognition [9.885278527023532]
Named entity recognition (NER) is a fundamental task in natural language processing that aims to identify and classify named entities in text.
We propose a novel approach for NER, named the Boundary Offset Prediction Network (BOPN), which predicts the boundary offsets between candidate spans and their nearest entity spans.
Our method integrates entity type and span representations to generate type-aware boundary offsets instead of using entity types as detection targets.
arXiv Detail & Related papers (2023-10-23T05:04:07Z) - NERetrieve: Dataset for Next Generation Named Entity Recognition and
Retrieval [49.827932299460514]
We argue that capabilities provided by large language models are not the end of NER research, but rather an exciting beginning.
We present three variants of the NER task, together with a dataset to support them.
We provide a large, silver-annotated corpus of 4 million paragraphs covering 500 entity types.
arXiv Detail & Related papers (2023-10-22T12:23:00Z) - Gaussian Prior Reinforcement Learning for Nested Named Entity
Recognition [52.46740830977898]
We propose a novel seq2seq model named GPRL, which formulates the nested NER task as an entity triplet sequence generation process.
Experiments on three nested NER datasets demonstrate that GPRL outperforms previous nested NER models.
arXiv Detail & Related papers (2023-05-12T05:55:34Z) - Dynamic Named Entity Recognition [5.9401550252715865]
We introduce a new task: Dynamic Named Entity Recognition (DNER)
DNER provides a framework to better evaluate the ability of algorithms to extract entities by exploiting the context.
We evaluate baseline models and present experiments reflecting issues and research axes related to this novel task.
arXiv Detail & Related papers (2023-02-16T15:50:02Z) - Optimizing Bi-Encoder for Named Entity Recognition via Contrastive
Learning [80.36076044023581]
We present an efficient bi-encoder framework for named entity recognition (NER)
We frame NER as a metric learning problem that maximizes the similarity between the vector representations of an entity mention and its type.
A major challenge to this bi-encoder formulation for NER lies in separating non-entity spans from entity mentions.
arXiv Detail & Related papers (2022-08-30T23:19:04Z) - An Embarrassingly Easy but Strong Baseline for Nested Named Entity
Recognition [55.080101447586635]
We propose using Conal Neural Network (CNN) to model spatial relations in the score matrix.
Our model surpasses several recently proposed methods with the same pre-trained encoders.
arXiv Detail & Related papers (2022-08-09T04:33:46Z) - Nested Named Entity Recognition as Latent Lexicalized Constituency
Parsing [29.705133932275892]
Recently, (Fu et al, 2021) adapt a span-based constituency to tackle nested NER.
In this work, we resort to more expressive structures, lexicalized constituency trees in which constituents are annotated by headwords.
We leverage the Eisner-Satta algorithm to perform partial marginalization and inference efficiently.
arXiv Detail & Related papers (2022-03-09T12:02:59Z) - Locate and Label: A Two-stage Identifier for Nested Named Entity
Recognition [9.809157050048375]
We propose a two-stage entity identifier for named entity recognition.
First, we generate span proposals by filtering and boundary regression on the seed spans to locate the entities, and then label the boundary-adjusted span proposals with the corresponding categories.
Our method effectively utilizes the boundary information of entities and partially matched spans during training.
arXiv Detail & Related papers (2021-05-14T12:52:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.