Unsupervised mapping of phase diagrams of 2D systems from infinite
projected entangled-pair states via deep anomaly detection
- URL: http://arxiv.org/abs/2105.09089v2
- Date: Thu, 8 Jul 2021 10:16:56 GMT
- Title: Unsupervised mapping of phase diagrams of 2D systems from infinite
projected entangled-pair states via deep anomaly detection
- Authors: Korbinian Kottmann, Philippe Corboz, Maciej Lewenstein, Antonio Ac\'in
- Abstract summary: We demonstrate how to map out the phase diagram of a two dimensional quantum many body system with no prior physical knowledge.
As a benchmark, the phase diagram of the 2D frustrated bilayer Heisenberg model is analyzed.
We show that in order to get a good qualitative picture of the transition lines, it suffices to use data from the cost-efficient simple update optimization.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We demonstrate how to map out the phase diagram of a two dimensional quantum
many body system with no prior physical knowledge by applying deep
\textit{anomaly detection} to ground states from infinite projected entangled
pair state simulations. As a benchmark, the phase diagram of the 2D frustrated
bilayer Heisenberg model is analyzed, which exhibits a second-order and two
first-order quantum phase transitions. We show that in order to get a good
qualitative picture of the transition lines, it suffices to use data from the
cost-efficient simple update optimization. Results are further improved by
post-selecting ground-states based on their energy at the cost of contracting
the tensor network once. Moreover, we show that the mantra of ``more training
data leads to better results'' is not true for the learning task at hand and
that, in principle, one training example suffices for this learning task. This
puts the necessity of neural network optimizations for these learning tasks in
question and we show that, at least for the model and data at hand, a simple
geometric analysis suffices.
Related papers
- Transformer neural networks and quantum simulators: a hybrid approach for simulating strongly correlated systems [1.6494451064539348]
We present a hybrid optimization scheme for neural quantum states (NQS) that involves a data-driven pretraining with numerical or experimental data and a second, Hamiltonian-driven optimization stage.
Our work paves the way for a reliable and efficient optimization of neural quantum states.
arXiv Detail & Related papers (2024-05-31T17:55:27Z) - Neural network enhanced measurement efficiency for molecular
groundstates [63.36515347329037]
We adapt common neural network models to learn complex groundstate wavefunctions for several molecular qubit Hamiltonians.
We find that using a neural network model provides a robust improvement over using single-copy measurement outcomes alone to reconstruct observables.
arXiv Detail & Related papers (2022-06-30T17:45:05Z) - Invertible Neural Networks for Graph Prediction [22.140275054568985]
In this work, we address conditional generation using deep invertible neural networks.
We adopt an end-to-end training approach since our objective is to address prediction and generation in the forward and backward processes at once.
arXiv Detail & Related papers (2022-06-02T17:28:33Z) - Transfer learning of phase transitions in percolation and directed
percolation [2.0342076109301583]
We apply domain adversarial neural network (DANN) based on transfer learning to studying non-equilibrium and equilibrium phase transition models.
The DANN learning of both models yields reliable results which are comparable to the ones from Monte Carlo simulations.
arXiv Detail & Related papers (2021-12-31T15:24:09Z) - Optimization-Based Separations for Neural Networks [57.875347246373956]
We show that gradient descent can efficiently learn ball indicator functions using a depth 2 neural network with two layers of sigmoidal activations.
This is the first optimization-based separation result where the approximation benefits of the stronger architecture provably manifest in practice.
arXiv Detail & Related papers (2021-12-04T18:07:47Z) - Adaptive Context-Aware Multi-Modal Network for Depth Completion [107.15344488719322]
We propose to adopt the graph propagation to capture the observed spatial contexts.
We then apply the attention mechanism on the propagation, which encourages the network to model the contextual information adaptively.
Finally, we introduce the symmetric gated fusion strategy to exploit the extracted multi-modal features effectively.
Our model, named Adaptive Context-Aware Multi-Modal Network (ACMNet), achieves the state-of-the-art performance on two benchmarks.
arXiv Detail & Related papers (2020-08-25T06:00:06Z) - Neural network quantum state tomography in a two-qubit experiment [52.77024349608834]
Machine learning inspired variational methods provide a promising route towards scalable state characterization for quantum simulators.
We benchmark and compare several such approaches by applying them to measured data from an experiment producing two-qubit entangled states.
We find that in the presence of experimental imperfections and noise, confining the variational manifold to physical states greatly improves the quality of the reconstructed states.
arXiv Detail & Related papers (2020-07-31T17:25:12Z) - A Quantum Graph Neural Network Approach to Particle Track Reconstruction [1.087475836765689]
We present an improved model with an iterative approach to overcome the low accuracy of the initial oversimplified Tree Network (TTN) model.
We aim to leverage the capability of quantum computing to evaluate a very large number of states simultaneously and thus to effectively search a large parameter space.
arXiv Detail & Related papers (2020-07-14T07:25:24Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
We propose a two-stage framework, with the first stage to quickly localize the prostate region and the second stage to precisely segment the prostate.
We introduce a novel online metric learning module through voxel-wise sampling in the multi-task network.
Our method can effectively learn more representative voxel-level features compared with the conventional learning methods with cross-entropy or Dice loss.
arXiv Detail & Related papers (2020-05-15T10:37:02Z) - On the interplay between physical and content priors in deep learning
for computational imaging [5.486833154281385]
We use the Phase Extraction Neural Network (PhENN) for quantitative phase retrieval in a lensless phase imaging system.
We show that the two questions are related and share a common crux: the choice of the training examples.
We also discover that weaker regularization effect leads to better learning of the underlying propagation model.
arXiv Detail & Related papers (2020-04-14T08:36:46Z) - Optimal Gradient Quantization Condition for Communication-Efficient
Distributed Training [99.42912552638168]
Communication of gradients is costly for training deep neural networks with multiple devices in computer vision applications.
In this work, we deduce the optimal condition of both the binary and multi-level gradient quantization for textbfANY gradient distribution.
Based on the optimal condition, we develop two novel quantization schemes: biased BinGrad and unbiased ORQ for binary and multi-level gradient quantization respectively.
arXiv Detail & Related papers (2020-02-25T18:28:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.