Copyright in Generative Deep Learning
- URL: http://arxiv.org/abs/2105.09266v5
- Date: Thu, 13 Feb 2025 12:15:30 GMT
- Title: Copyright in Generative Deep Learning
- Authors: Giorgio Franceschelli, Mirco Musolesi,
- Abstract summary: We consider a set of key questions in the area of generative deep learning for the arts.
We try to answer these questions considering the law in force in both the United States of America and the European Union.
We then extend our analysis to code generation, which is an emerging area of generative deep learning.
- Score: 2.4555276449137042
- License:
- Abstract: Machine-generated artworks are now part of the contemporary art scene: they are attracting significant investments and they are presented in exhibitions together with those created by human artists. These artworks are mainly based on generative deep learning techniques, which have seen a formidable development and remarkable refinement in the very recent years. Given the inherent characteristics of these techniques, a series of novel legal problems arise. In this article, we consider a set of key questions in the area of generative deep learning for the arts, including the following: is it possible to use copyrighted works as training set for generative models? How do we legally store their copies in order to perform the training process? Who (if someone) will own the copyright on the generated data? We try to answer these questions considering the law in force in both the United States of America and the European Union, and potential future alternatives. We then extend our analysis to code generation, which is an emerging area of generative deep learning. Finally, we also formulate a set of practical guidelines for artists and developers working on deep learning generated art, as well as some policy suggestions for policymakers.
Related papers
- IntroStyle: Training-Free Introspective Style Attribution using Diffusion Features [89.95303251220734]
We present a training-free framework to solve the style attribution problem, using the features produced by a diffusion model alone.
This is denoted as introspective style attribution (IntroStyle) and demonstrates superior performance to state-of-the-art models for style retrieval.
We also introduce a synthetic dataset of Style Hacks (SHacks) to isolate artistic style and evaluate fine-grained style attribution performance.
arXiv Detail & Related papers (2024-12-19T01:21:23Z) - Art-Free Generative Models: Art Creation Without Graphic Art Knowledge [50.60063523054282]
We propose a text-to-image generation model trained without access to art-related content.
We then introduce a simple yet effective method to learn an art adapter using only a few examples of selected artistic styles.
arXiv Detail & Related papers (2024-11-29T18:59:01Z) - Diffusion-Based Visual Art Creation: A Survey and New Perspectives [51.522935314070416]
This survey explores the emerging realm of diffusion-based visual art creation, examining its development from both artistic and technical perspectives.
Our findings reveal how artistic requirements are transformed into technical challenges and highlight the design and application of diffusion-based methods within visual art creation.
We aim to shed light on the mechanisms through which AI systems emulate and possibly, enhance human capacities in artistic perception and creativity.
arXiv Detail & Related papers (2024-08-22T04:49:50Z) - At the edge of a generative cultural precipice [1.688134675717698]
Since NFTs and large generative models have been publicly available, artists have seen their jobs threatened and stolen.
generative models are trained using human-produced content to better guide the style and themes they can produce.
Inspired by recent work in generative models, we wish to tell a cautionary tale and ask what will happen to the visual arts if generative models continue on the path to be trained solely on generated content.
arXiv Detail & Related papers (2024-04-30T23:26:24Z) - ©Plug-in Authorization for Human Content Copyright Protection in Text-to-Image Model [71.47762442337948]
State-of-the-art models create high-quality content without crediting original creators.
We propose the copyright Plug-in Authorization framework, introducing three operations: addition, extraction, and combination.
Experiments in artist-style replication and cartoon IP recreation demonstrate copyright plug-ins' effectiveness.
arXiv Detail & Related papers (2024-04-18T07:48:00Z) - Copyright Protection in Generative AI: A Technical Perspective [58.84343394349887]
Generative AI has witnessed rapid advancement in recent years, expanding their capabilities to create synthesized content such as text, images, audio, and code.
The high fidelity and authenticity of contents generated by these Deep Generative Models (DGMs) have sparked significant copyright concerns.
This work delves into this issue by providing a comprehensive overview of copyright protection from a technical perspective.
arXiv Detail & Related papers (2024-02-04T04:00:33Z) - A Dataset and Benchmark for Copyright Infringement Unlearning from Text-to-Image Diffusion Models [52.49582606341111]
Copyright law confers creators the exclusive rights to reproduce, distribute, and monetize their creative works.
Recent progress in text-to-image generation has introduced formidable challenges to copyright enforcement.
We introduce a novel pipeline that harmonizes CLIP, ChatGPT, and diffusion models to curate a dataset.
arXiv Detail & Related papers (2024-01-04T11:14:01Z) - Studying Artist Sentiments around AI-generated Artwork [25.02527831382343]
We interviewed 7 artists and analyzed public posts from artists on social media platforms Reddit, Twitter and Artstation.
We report artists' main concerns and hopes around AI-generated artwork, informing a way forward for inclusive development of these tools.
arXiv Detail & Related papers (2023-11-22T22:44:02Z) - Artistic Strategies to Guide Neural Networks [0.0]
This paper explores the potentials and limits of current AI technology, in the context of image, text, form and translation of semiotic spaces.
In a relatively short time, the generation of high-resolution images and 3D objects has been achieved.
Yet again, we see how artworks act as catalysts for technology development.
arXiv Detail & Related papers (2023-07-06T22:57:10Z) - Biases in Generative Art -- A Causal Look from the Lens of Art History [3.198144010381572]
We investigate biases in the generative art AI pipeline from those that can originate due to improper problem formulation to those related to algorithm design.
We highlight how current methods fall short in modeling the process of art creation and thus contribute to various types of biases.
arXiv Detail & Related papers (2020-10-26T00:49:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.