Unsupervised learning of text line segmentation by differentiating
coarse patterns
- URL: http://arxiv.org/abs/2105.09405v2
- Date: Fri, 21 May 2021 00:39:27 GMT
- Title: Unsupervised learning of text line segmentation by differentiating
coarse patterns
- Authors: Berat Kurar Barakat, Ahmad Droby, Raid Saabni, and Jihad El-Sana
- Abstract summary: We present an unsupervised deep learning method that embeds document image patches to a compact Euclidean space where distances correspond to a coarse text line pattern similarity.
Text line segmentation can be easily implemented using standard techniques with the embedded feature vectors.
We evaluate the method qualitatively and quantitatively on several variants of text line segmentation datasets to demonstrate its effectivity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite recent advances in the field of supervised deep learning for text
line segmentation, unsupervised deep learning solutions are beginning to gain
popularity. In this paper, we present an unsupervised deep learning method that
embeds document image patches to a compact Euclidean space where distances
correspond to a coarse text line pattern similarity. Once this space has been
produced, text line segmentation can be easily implemented using standard
techniques with the embedded feature vectors. To train the model, we extract
random pairs of document image patches with the assumption that neighbour
patches contain a similar coarse trend of text lines, whereas if one of them is
rotated, they contain different coarse trends of text lines. Doing well on this
task requires the model to learn to recognize the text lines and their salient
parts. The benefit of our approach is zero manual labelling effort. We evaluate
the method qualitatively and quantitatively on several variants of text line
segmentation datasets to demonstrate its effectivity.
Related papers
- Segmenting Messy Text: Detecting Boundaries in Text Derived from
Historical Newspaper Images [0.0]
We consider a challenging text segmentation task: dividing newspaper marriage announcement lists into units of one announcement each.
In many cases the information is not structured into sentences, and adjacent segments are not topically distinct from each other.
We present a novel deep learning-based model for segmenting such text and show that it significantly outperforms an existing state-of-the-art method on our task.
arXiv Detail & Related papers (2023-12-20T05:17:06Z) - Copy Is All You Need [66.00852205068327]
We formulate text generation as progressively copying text segments from an existing text collection.
Our approach achieves better generation quality according to both automatic and human evaluations.
Our approach attains additional performance gains by simply scaling up to larger text collections.
arXiv Detail & Related papers (2023-07-13T05:03:26Z) - LRANet: Towards Accurate and Efficient Scene Text Detection with
Low-Rank Approximation Network [63.554061288184165]
We propose a novel parameterized text shape method based on low-rank approximation.
By exploring the shape correlation among different text contours, our method achieves consistency, compactness, simplicity, and robustness in shape representation.
We implement an accurate and efficient arbitrary-shaped text detector named LRANet.
arXiv Detail & Related papers (2023-06-27T02:03:46Z) - SpaText: Spatio-Textual Representation for Controllable Image Generation [61.89548017729586]
SpaText is a new method for text-to-image generation using open-vocabulary scene control.
In addition to a global text prompt that describes the entire scene, the user provides a segmentation map.
We show its effectiveness on two state-of-the-art diffusion models: pixel-based and latent-conditional-based.
arXiv Detail & Related papers (2022-11-25T18:59:10Z) - SOLD2: Self-supervised Occlusion-aware Line Description and Detection [95.8719432775724]
We introduce the first joint detection and description of line segments in a single deep network.
Our method does not require any annotated line labels and can therefore generalize to any dataset.
We evaluate our approach against previous line detection and description methods on several multi-view datasets.
arXiv Detail & Related papers (2021-04-07T19:27:17Z) - Unsupervised Deep Learning for Handwritten Page Segmentation [0.0]
We present an unsupervised deep learning method for page segmentation.
A siamese neural network is trained to differentiate between patches using their measurable properties.
Our experiments show that the proposed unsupervised method is as effective as typical supervised methods.
arXiv Detail & Related papers (2021-01-19T07:13:38Z) - Scene Text Detection with Scribble Lines [59.698806258671105]
We propose to annotate texts by scribble lines instead of polygons for text detection.
It is a general labeling method for texts with various shapes and requires low labeling costs.
Experiments show that the proposed method bridges the performance gap between the weakly labeling method and the original polygon-based labeling methods.
arXiv Detail & Related papers (2020-12-09T13:14:53Z) - OrigamiNet: Weakly-Supervised, Segmentation-Free, One-Step, Full Page
Text Recognition by learning to unfold [6.09170287691728]
We take a step from segmentation-free single line recognition towards segmentation-free multi-line / full page recognition.
We propose a novel and simple neural network module, termed textbfOrigamiNet, that can augment any CTC-trained, fully convolutional single line text recognizer.
We achieve state-of-the-art character error rate on both IAM & ICDAR 2017 HTR benchmarks for handwriting recognition, surpassing all other methods in the literature.
arXiv Detail & Related papers (2020-06-12T22:18:02Z) - Unsupervised deep learning for text line segmentation [0.0]
A common method is to train a deep learning network for embedding the document image into an image of blob lines that are tracing the text lines.
This paper presents an unsupervised embedding of document image patches without a need for annotations.
We show that the outliers do not harm the convergence and the network learns to discriminate the text lines from the spaces between text lines.
arXiv Detail & Related papers (2020-03-19T08:57:53Z) - TextScanner: Reading Characters in Order for Robust Scene Text
Recognition [60.04267660533966]
TextScanner is an alternative approach for scene text recognition.
It generates pixel-wise, multi-channel segmentation maps for character class, position and order.
It also adopts RNN for context modeling and performs paralleled prediction for character position and class.
arXiv Detail & Related papers (2019-12-28T07:52:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.