Dependency Parsing with Bottom-up Hierarchical Pointer Networks
- URL: http://arxiv.org/abs/2105.09611v1
- Date: Thu, 20 May 2021 09:10:42 GMT
- Title: Dependency Parsing with Bottom-up Hierarchical Pointer Networks
- Authors: Daniel Fern\'andez-Gonz\'alez and Carlos G\'omez-Rodr\'iguez
- Abstract summary: Left-to-right and top-down transition-based algorithms are among the most accurate approaches for performing dependency parsing.
We propose two novel transition-based alternatives: an approach that parses a sentence in right-to-left order and a variant that does it from the outside in.
We empirically test the proposed neural architecture with the different algorithms on a wide variety of languages, outperforming the original approach in practically all of them.
- Score: 0.7412445894287709
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dependency parsing is a crucial step towards deep language understanding and,
therefore, widely demanded by numerous Natural Language Processing
applications. In particular, left-to-right and top-down transition-based
algorithms that rely on Pointer Networks are among the most accurate approaches
for performing dependency parsing. Additionally, it has been observed for the
top-down algorithm that Pointer Networks' sequential decoding can be improved
by implementing a hierarchical variant, more adequate to model dependency
structures. Considering all this, we develop a bottom-up-oriented Hierarchical
Pointer Network for the left-to-right parser and propose two novel
transition-based alternatives: an approach that parses a sentence in
right-to-left order and a variant that does it from the outside in. We
empirically test the proposed neural architecture with the different algorithms
on a wide variety of languages, outperforming the original approach in
practically all of them and setting new state-of-the-art results on the English
and Chinese Penn Treebanks for non-contextualized and BERT-based embeddings.
Related papers
- Training Neural Networks as Recognizers of Formal Languages [87.06906286950438]
Formal language theory pertains specifically to recognizers.
It is common to instead use proxy tasks that are similar in only an informal sense.
We correct this mismatch by training and evaluating neural networks directly as binary classifiers of strings.
arXiv Detail & Related papers (2024-11-11T16:33:25Z) - Cross-domain Chinese Sentence Pattern Parsing [67.1381983012038]
Sentence Pattern Structure (SPS) parsing is a syntactic analysis method primarily employed in language teaching.
Existing SPSs rely heavily on textbook corpora for training, lacking cross-domain capability.
This paper proposes an innovative approach leveraging large language models (LLMs) within a self-training framework.
arXiv Detail & Related papers (2024-02-26T05:30:48Z) - Semantics-Aware Dynamic Localization and Refinement for Referring Image
Segmentation [102.25240608024063]
Referring image segments an image from a language expression.
We develop an algorithm that shifts from being localization-centric to segmentation-language.
Compared to its counterparts, our method is more versatile yet effective.
arXiv Detail & Related papers (2023-03-11T08:42:40Z) - Shift-Reduce Task-Oriented Semantic Parsing with Stack-Transformers [6.744385328015561]
Task-oriented dialogue systems, such as Apple Siri and Amazon Alexa, require a semantic parsing module in order to process user utterances and understand the action to be performed.
This semantic parsing component was initially implemented by rule-based or statistical slot-filling approaches for processing simple queries.
In this article, we advance the research on neural-reduce semantic parsing for task-oriented dialogue.
arXiv Detail & Related papers (2022-10-21T14:19:47Z) - Source Code Summarization with Structural Relative Position Guided
Transformer [19.828300746504148]
Source code summarization aims at generating concise and clear natural language descriptions for programming languages.
Recent efforts focus on incorporating the syntax structure of code into neural networks such as Transformer.
We propose a Structural Relative Position guided Transformer, named SCRIPT.
arXiv Detail & Related papers (2022-02-14T07:34:33Z) - R2D2: Recursive Transformer based on Differentiable Tree for
Interpretable Hierarchical Language Modeling [36.61173494449218]
This paper proposes a model based on differentiable CKY style binary trees to emulate the composition process.
We extend the bidirectional language model pre-training objective to this architecture, attempting to predict each word given its left and right abstraction nodes.
To scale up our approach, we also introduce an efficient pruned tree induction algorithm to enable encoding in just a linear number of composition steps.
arXiv Detail & Related papers (2021-07-02T11:00:46Z) - A Holistically-Guided Decoder for Deep Representation Learning with
Applications to Semantic Segmentation and Object Detection [74.88284082187462]
One common strategy is to adopt dilated convolutions in the backbone networks to extract high-resolution feature maps.
We propose one novel holistically-guided decoder which is introduced to obtain the high-resolution semantic-rich feature maps.
arXiv Detail & Related papers (2020-12-18T10:51:49Z) - Transition-based Semantic Dependency Parsing with Pointer Networks [0.34376560669160383]
We propose a transition system that can straightforwardly produce labelled directed acyclic graphs and perform semantic dependency parsing.
We enhance our approach with deep contextualized word embeddings extracted from BERT.
The resulting system not only outperforms all existing transition-based models, but also matches the best fully-supervised accuracy to date on SemEval 2015 18 English datasets.
arXiv Detail & Related papers (2020-05-27T13:18:27Z) - Towards Instance-Level Parser Selection for Cross-Lingual Transfer of
Dependency Parsers [59.345145623931636]
We argue for a novel cross-lingual transfer paradigm: instance-level selection (ILPS)
We present a proof-of-concept study focused on instance-level selection in the framework of delexicalized transfer.
arXiv Detail & Related papers (2020-04-16T13:18:55Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
We propose a generic feature learning mechanism to advance CNN training with enhanced generalization ability.
Partially inspired by DSN, we fork delicately designed side branches from the intermediate layers of a given neural network.
Experiments on both category and instance recognition tasks demonstrate the substantial improvements of our proposed method.
arXiv Detail & Related papers (2020-03-24T09:56:13Z) - Discontinuous Constituent Parsing with Pointer Networks [0.34376560669160383]
discontinuous constituent trees are crucial for representing all grammatical phenomena of languages such as German.
Recent advances in dependency parsing have shown that Pointer Networks excel in efficiently parsing syntactic relations between words in a sentence.
We propose a novel neural network architecture that is able to generate the most accurate discontinuous constituent representations.
arXiv Detail & Related papers (2020-02-05T15:12:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.